R SSI*

Smart Systems Integration

Project Design Laboratory

FALL DETECTION SENSOR

Project documentation

ANZEN project team:

Ankita Rambhal
Pallavi Praful
Md. Rakin Sarder
Faith Onuoha

Date: 1.11.2020

1 Project objective

The overall goal of this project is the design of a complete smart system consisting of
a MEMS sensor, an analog signal conditioning circuit and digital signal processing. A user
specification is given for each project team. The specification parameters differ from
project to project according to the specified application.

2 Design structure overview

Every project comprises the following components:

MEMS
device

»| Signal

A 4

Analog

\ 4

AMP A/D

2.1 MEMS device

a sensor type device, a cantilever with piezoresistive sensing elements

the sensors are subjected to an acceleration loading

Design input: The basic geometry structure of the MEMS devices

Design parameters: Geometry sizing, the amplitude, time and direction of the
gravity and/or pressure loading

e Design task: Size the geometry of the device, validate with simulation, create a
reduced-order model of the device

2.2 Analog interface

e Signal conditioning circuit
o Can be an operational amplifier which converts the change in resistance of
the piezoresistor to a voltage which loads a voltage controlled oscillator
Input: idealized circuit models, circuit schematics
Design parameters: gain, bandwidth, offset, noise, current consumption, output
resistance.
e Design tasks:
o Determine a set of design parameters which fulfil the customer specified
operation.
o Sizing of the circuits and validation by simulations

2.3 Signal processing

e The signal processing circuit monitors the frequency of the VCO. Based on the
acquired data it makes a decision whether an interrupt should be sent to the host
microprocessor or not.

Input: All VHDL codes presented in the video tutorials may be reused.
Design parameters: Initial frequency, input frequency range

Design task:
o Determine a set of design parameters which fulfil the customer specified
operation.

o Design the signal processing circuit in VHDL, validate with simulation and
synthesize the circuit

3 Customer specification

For elderly individuals and those vulnerable to falls, falls are a serious concern. Of the
population aged 65 years and over, one-third to one-half have suffered falls [1]. Unfortunately,
falls are a dynamic phenomenon, and they are the result of any ongoing illness and predict
potential impairment. They are triggered by environmental and dynamic equilibrium
interactions, which are determined by the consistency of sensory feedback, internal processing,
and motor responses [2]. According to a report published by the WHO in 2018 [3],

e Falls are the second leading cause of accidental or unintentional injury deaths
worldwide.

e Around 646 thousand people lose their lives from falls around the world, of which
over 80% are developing and under-developed nations.

e The greatest number of fatal falls are suffered by adults older than 65 years of
age.

e 37.3 million falls that are severe enough to require medical attention occur each
year.

e Prevention strategies should emphasize education, training, creating safer
environments, prioritizing fall-related research and establishing effective policies to
reduce risk.

Even a drop that does not lead to injury may have significant implications. A downward
spiral of self-imposed reduced activity can be generated by psychological stress and fear of
falling, leading to a loss of strength, endurance, and agility, thus raising the likelihood of potential
falls and injuries [4].

That is why fall detection is extremely significant in the nursing and care of the old people. The
primary challenges to tackle are:
e Monitoring and learning the Posture, Motion and Orientation (PMO) of the
elderly/patient
e Detecting any sudden anomaly in the PMO and act instantly

e Creating auditory alert system to let people nearby regarding the subject’s fall
Our proposed system “Anzen” is a smart fall detector and prevention belt which will detect a
person falling and immediately trigger a local alarm system to alert nearby people regarding a
subject’s fall.

- ~N (IDENTIFICATION r
e Measure stimuli : e Trigger alarm
(acceleration o Checkiif it an
e Characterize alarm
motion e Characterize
between ADL
and fall
— MEASUREMENT _) \— ACTION

N

Figure 1: Anzen fall detection system overview

The salient features of our proposed system are:
e Setup a threshold acceleration voltage which will differentiate between a possible
fall case and Activities of Daily Living (ADL).
e Detects any falling scenario for 1770ms~220ms.
e Trigger an alarm once a fall event is identified and alert others in the vicinity.

One of the biggest considerations before starting the design of the fall detection system is the
choice of placement of the sensor. This is because the sensor response depends upon the
interpersonal differences of the user. The interpersonal difference is directly proportional to:

e Gender of the user

e Unique postures made by a user

e User physical characteristics (such as obesity, thinness etc.)

While the interpersonal differences increase due to the subject’s attributes, the performance
accuracy of the fall detection decreases. Therefore, to limit the interpersonal differences at a

~

minimum level, the sensor position is chosen. A study based on [5] shows the accuracy based on
sensor placement of a single sensor-based solution (Figure 2). Based on the study, we are
choosing waist as the suitable sensor placement, since it provides the highest accuracy, and this
region is the closest to the user’s centre of gravity. Our chosen position is also backed by other
notable works [6, 7]. In terms of user comfort, waist position is also suitable, as it has been backed
by different works [8] and existing products in the market [9, 10].

96.61%
A
96.50%

L L

98.42%
Walct — 94.92%

C

Figure 2: Accuracy of fall detection for different placements of a detection device [5]

“Anzen” belts are to be worn by the user above the hips, near the belly region. From an
engineering point of view, the belt consists:
e Accelerometer
e Buzzer
¢ A central processing unit (which integrates the sensors, airbag driver module and
the buzzer)

To achieve to our desired project goal, the whole process architecture can be summarized into three
design sections:

MEMS Dlgltal
Analog design to
Acceleromet Lo :
circuit characterize
er sensor :
: design and make
design .
decision

Figure 3: Design sections of Anzen

Since our project is operating based on environmental stimuli and threshold-based detection, the system
is suitable for real-time implementation[11]. However, to limit the design complexity, we are limiting our
system based on only one MEMS acceleration sensor. While this provide some clarity and simplicity to
our design process, we are limited in characterizing some ADLs and fall events which are significantly
dependent on the orientation of the device [12].

4 Design of the project workflow
List of Work Packages (WPs)

WP no. | WP title WP leader SUM workload

1 Behavioral modeling in system level Pallavi Praful 52

2 Analog circuit design Ankita Rambhal 40

3 Digital circuit design Md. Rakin Sarder 40

4 Presentation of the work Faith Onuoha 12
Timing in workdays:

WP No. Starts Duration Ends

Kickoff meeting DO

1 D1 33 D34

Progress meeting D35

2 D35 18 D53

3 D35 18 D53

4 D54 6 D60

Project evaluation D61

Deadlines:
Kickoff meeting
WP1 submission
Progress meeting
WP2 submission
WP3 submission
Progress meeting
WP4 submission
Final meeting

09 October 2019 12:15

12 November 2019 00:00
13 November 2019 14:15

1 December 2019 00:00
1 December 2019 00:00
2 December 2019 10:15
8 December 2019 00:00
9 December 2019 10:15

5 Work Package 1: Behavioral modelling in system
level

5.1 Overview

WP Leader Pallavi Praful Rakin Sarder | Ankita Rambhal Faith Onuoha
Pallavi Praful 30 5 3 14
SUM 52 Duration: 33
Workload:
Objectives

e Understanding the customer specification and create the system specification
e Create a behavioral model for the MEMS device, the analog and the digital circuits
Tasks
e Carrying out hand calculations based on the customer specification to determine
the basic geometry of the MEMS devices. Note the different stimuli in case of front
and side impact.
e Performing FEM simulations of the proper sized MEMS devices
o Test loads, Element loads (pressure and gravity)
o Modal analysis
Producing the reduced-order models (ROM) of the MEMS devices
Identifying typical working conditions (in case of front and side impact)
Perform master node displacement analysis under standard working conditions
o lIdentify the moving margins of the device
Transient analysis: identify the required time resolution
Calculate the piezo resistors resistance-change based on the master node
displacements
Calculate the required parameters of the amplifier stage
Calculate the required parameters of the VCO
Define the required functionalities of the digital data processing unit.
e Perform an integrated system testing and validate the parameters
Deliverables
D1.1 System specification
D1.2 MEMS model parameters, ROM parameters
D1.3 Proposed MEMS technology and process steps
D1.4 System-level testing results
D1.5 Module specifications

5.2 Work Package 1: Project implementation steps

For any engineering problem or a multi-domain problem that needs to be solved by
engineering, the first and the most important task is to analyze the problem statement. In our
case, our primary goal is to analyze human (especially elderly) activities that requires motor
functionalities, postures, and locomotion.

On the other hand, to obtain suitable design parameters and a conceptual prototype of any
devices, analysis of existing systems and studies provide significant insights regarding the (i)
decision making, (ii) design choice and approach, (iii) static and dynamic response, and (iv)
suitability in real-world context.

For the purpose of the project, we are analyzing SisFall dataset, a public available dataset
consisting fall and movement data of different ADLs and falls[13]. The dataset has been
published by SISTEMIC, Faculty of Engineering, Universidad de Antiquia UDEA under a CCA
4.0 International License. The dataset consists of 4510 files of different activities, including falls.
The data was acquired via a set of sensor modules, which consists two triaxial accelerometers
(ADXL345 and MMAB8451Q) and one gyroscopic sensor (ITG3200). The dataset consists of the
following features:

e Video streams recorded for each ADLs and falls which corresponds to the database
o Total participants between age 19-30 (young adults): 23

o Total participants between age 60-75 (elders): 15

e Each file consists a single activity

¢ No. Of ADLs measured: 19 (Table 1)

¢ No. Of falls measured: 15 (Table 1)

e No. of trials per falls: 5

o Time frame recorded for each fall: 15s

¢ No. Of samples per trials: 3000

o No. of trials per ADLs: 5 (for 14 activities), 1 (for 5 activities)
e Time frame recorded for each ADLs: 12s~100s

One of the main reasons of choosing this dataset for our project is because most of the
available solutions in the market and datasets available for research lacks the records of real
falls with elderly, and since most of them have been tested under a controlled environment with
constraints, often they lack accuracy in their approaches when they are institutionally tested or
implemented on elderly people. The SisFall research’s primary purpose was to mitigate these
issues, and to provide researchers and new product developers a comprehensive and accurate
dataset to work on[14].

Although humans are not limited to any certain activity set, almost all the regular
activities of a human can be characterized into a set. The set of activities which a human does
in day to day life are called Activities of Daily Living (ADL). The physical functions that fall within
ADL can define almost all types of activities. Thus, ADL classification is the fundamental basis
for detecting falls. Because any activity which is not present in the ADL can be classified as a
fall event. Table [i] shows different types of ADLs and falls based on the SisFall dataset. The

time of fall values was measured from the video footages using Corel VideoStudio X10. We can
see for each fall, a time frame has been noted in the table. These timeframes have been
approximately analyzed from the video streams attached to each fall. Timestamps from the
starting of the fall to the timestamp when the fall event completed was noted, and the difference
between these two values has been recorded. The time of fall varied from participants to
participants within the found range based on the interpersonal differences.

Table 1: Classification of ADLs and falls with time of falls

SL Events Time of fall
No
Activities | 1 Walking slowly -
of Daily 2 Walking quickly -
Living 3 Jogging slowly -
(ADLs) 4 Jogging quickly -
5 Walking upstairs and downstairs slowly -
6 Walking upstairs and downstairs quickly -
7 Slowly sit in a half height chair, wait a moment, and up slowly -
8 Quickly sitin a half height chair, wait a moment, and up quickly | -
9 Slowly sit in a low height chair, wait a moment, and up slowly -
10 | Quickly sitin a low height chair, wait a moment, and up quickly | -
11 | Sitting a moment, trying to get up, and collapse into a chair -
12 | Sitting a moment, lying slowly, wait a moment, and sit again -
13 | Sitting a moment, lying quickly, wait a moment, and sit again -
14 | Being on one’s back change to lateral position, wait a moment, -
and change to one’s back
15 | Standing, slowly bending at knees, and getting up -
16 | Standing, slowly bending without bending knees, and getting up | -
17 | Standing, get into a car, remain seated and get out of the car -
18 | Stumble while walking -
19 | Gently jump without falling (trying to reach a high object) -
Fall 1 Fall forward while walking caused by a slip 1~2 sec
2 Fall backward while walking caused by a slip 1~2 sec
3 Lateral fall while walking caused by a slip 1~2 sec
4 Fall forward while walking caused by a trip 1~2 sec
5 Fall forward while jogging caused by a trip 1~2 sec
6 Vertical fall while walking caused by fainting 1~2 sec
7 Fall while walking, with use of hands in a table to dampen fall, 1~2 sec
caused by fainting
8 Fall forward when trying to get up 1~3 sec
9 Lateral fall when trying to get up 1~3 sec
10 | Fall forward when trying to sit down 1~3 sec
11 | Fall backward when trying to sit down 1~3 sec
12 | Lateral fall when trying to sit down 1~3 sec
13 | Fall forward while sitting, caused by fainting, or falling asleep 1~3 sec
14 | Fall backward while sitting, caused by fainting, or falling asleep | 1~3 sec
15 | Lateral fall while sitting, caused by fainting, or falling asleep 1~3 sec

10

5.3 Required dynamic response of the sensor

As already mentioned in the customer specification, we are designing our fall detection
system based on a single triaxial sensor. The SisFall dataset used two accelerometers, and one
gyroscope. For the sensor data analysis, we are only considering the data from the ADXL345
accelerometer sensor. ADXL345 sensor has the following specification:

Table 2: ADXL345 sensor specification

Resolution 13 bits
Range +-16g
Measuring values Ax (-235 to +270)

Ay (-240 to +260)
Az (-240 to +270)

The first consideration to design our system was to analyze the speed of sensor data acquisition
(acquisition sensitivity of data) by the SisFall system. The acquisition sensitivity contributes to
the system accuracy, at the same time controls the decision-making stage of the system.

5.3.1 Equations analysis

The data included in the SisFall dataset contains the raw data from their sensor system. To
convert the raw data of ADXL345 into acceleration in g, the equation is:

(9) = pomies * RAD (1)

where RAD is the raw acceleration data.

In the SisFall research[14], they have proposed a threshold-based system with a non-linear
classification feature, which is combined with a Kalman filter and a periodicity detector in order
reduce false fall detections. Since we are proposing a simpler approach with reduced
complexity, we are choosing the following parameters and derived values as our thresholds:

e Axial accelerations,

¢ RMS (Root-mean-square) of the acceleration,

e Pitch of the motion, and

e Roll of the motion

The algorithm chosen for our fall detection is given by Figure 4.

11

! Measure the ! i
) ! | Time !
+ acceleration / trajectory !
N i
PR " ________________ '
Continuous based
On system frequency
S T~o . True

—<__ Periodic? _>
See LT

False

Figure 4: Fall detection algorithm chosen for the system in details

The choice of the thresholds has been backed by the following works [12, 15, 16]. The RMS of
the accelerations can be found from the following equation:

a= \[sz + 4,5+ A7 2)

Figure 5: The RMS and the orientation angles of human body [12]

12

The pitch (8) can be calculated by:
Ax

Jm) 3)

The roll value (®) can be calculated by:

0 = tan"I(

® = tan~! (—2L—) (4)

,Ax2+A22
5.3.1.1

5.3.1.2Derivation of thresholds from video and sensor data analysis:

To derive the optimum threshold values of acceleration, time frame, RMS, pitch and roll we
considered these 5 fall events:

e Fall forward while walking caused by a slip

e Fall backward while walking caused by a slip

e Fall forward when trying to sit down

e Fall backward when trying to sit down

e Fall backward while sitting, caused by fainting, or falling asleep

To analyze the time frame of fall, we are analyzing the video footages for the falls from the
SisFall project (Table 3). The project consists only one set (of one subject) of publicly available
footages which demonstrates different ADLs and fall events. We used Corel VideoStudio X10 to
capture timestamp up to millisecond level of the starting and ending of the fall event.

Lt 7]

UL TR 1
I ANTI A

Figure 6: An example method of capturing the time frame of fall using the software

13

Table 3: Timestamp values and the time frame of fall captured from the video footages of the falls
using the software

fainting, or falling asleep

Fall type Starting time (in Ending time Time frame of fall
sec) (sec) (sec)

Fall forward while 14.19 16.00 1.81

walking caused by a slip

Fall backward while 13.13 14.09 0.96

walking caused by a slip

Fall forward when trying | 10.02 11.07 1.05

to sit down

Fall backward when 9.10 11.01 1.91

trying to sit down

Fall backward while 8.29 11.23 2.94

sitting, caused by

We measured the remaining thresholds considering the acceleration data within these time
frames added with some additional time before and after the fall (to consider the previous/next
motion). We extracted the data points from the corresponding data set and calculated the
results. Table 4 shows the required values found and derived during these time frames. The
equations mentioned above was used for the calculation. We have additionally measured the
standard deviation of Az and RMS to determine the lower bound maximation for the
acceleration threshold. Based on the method, the lower bound of our acceleration threshold
along Z-axis is 0.9 g, and for RMS it is 1.5853g.

Table 4: Threshold values measured and calculated during the time frame of falls

Fall type

Mean_ Max_

Ax

Mean_
Ay

Max_
Ay

Max_
Az

Mean_
Az

STD_Az

RMS_
mean

RMS_
max

RMS_S

TD

Pitch_
Mean

Pitch_
Max

Roll_
Mean

Roll_
Max

Fall
forward
while
walking
caused by
aslip

0.34 7.36 0.635

3.617

0.435 1.980

0.343

1.048 8.015

0.61

-10.66 45.457 -43.12

83.21

Fall
backward
while
walking
caused by
aslip

0.206 3.109 0.433

8.55

0.744 5.058

0.461

1.035 10.410

0.738

-7.959 54.168 -22.472

79.671

Fall
forward
when
trying to
sit down

0.342 5.47 0.598

5523

0.611 9.929

0.660

1.077 11.149

0.634

-18.652 17.396 -31.690

88.827

Fall
backward
when
trying to
sit down

0.126 1.890 0.557

4.941

0.596 4.765

0.437

1.002 6.803

0.385

3.976 52.479 -37.377

50.238

14

Fall 0.120 1.890 0.639 4.941
backward
while
sitting,
caused by
fainting, or
falling
asleep

0.526

4.765

0.487 1.007 6.803 0.393 2.934 52.479 -44.387

50.238

5.3.1.3 Summary

The result for finding the approximate thresholds derived from the data set and the video are

given below in Table 5.

Table 5: Summary of the chosen threshold values for the project

Parameter

Axial acceleration
RMS acceleration
Time frame of fall
Pitch range for fall
Roll range for falls

5.3.1.4 Case study: Elder

Threshold

0.99

1.5853g

1.734 sec
0>45° or 6<-45°
-45°< @ < 45°

To verify the derived thresholds for fall detection with real-life cases, we are using two SUSs
(Subject-Under-Study), from the SisFall research. The description of our first test subject is as

follows:
Table 6 Details of the first test subject
Gender Male
Age 60 years old
Height 173 cm
Weight 79 kg

ADL comparison: Comparisons of the chosen threshold against some primary ADLs of the
subject are given from Fig 7. to Fig 10. From the figures, we can see that the apart from some
minor anomalies, in most cases the threshold values could satisfy the activity conditions.

15

Acceleration of participant SE06 Walking slowly

i

B e

o =

Figure 7(a-c) Acceleration, RMS, Pitch and Roll value of the elderly subject walking slowly.

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

The red line in (a) denotes the RMS
threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold areas

16

Acceleration of participant SE06 Walking upstairs and downstairs slowly

geee

A Pt SO Wb e wd e vy

—4*wﬁ!y#u(kwghwjﬁwfwm -

W A

o — = = = ¥ J—

Figure 8 (a-c) Acceleration, RMS, Pitch and Roll value of the elderly when walking upstairs and downstairs slowly. The red
line in (a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold

areas

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

17

Acceleration of participant SEO6 Slewly sit in a low height chair, wait a mement, and up slowly

jii

i

Figure 9 (a-c) Acceleration, RMS, Pitch and Roll value of the elderly subject slowly sit in a low height chair, wait a moment.
The red line in (a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding

threshold areas

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

18

Acceleration of participant SEO6 Sitting a moment, lying quickly, wait a moment, and sit again

jrat

ax

Aarwermien ()

Pt o et B Sl ety b, e e o

e et b e et

Figure 10 (a-c) Acceleration, RMS, Pitch and Roll value of the elderly subject sitting a moment, lying quickly, wait & sit again.
The red line in (a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding

threshold areas

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

In this ADL case, we can see that the angular values went beyond the threshold, during the time
the subject was lying. But the acceleration threshold level was not surpassed, therefore the
system will not characterize this as a fall event. However, this is one of the other cases that
might give some false-positive inputs.

19

Fall comparison: Comparisons of the chosen threshold against some primary falls of the

subject are given from Fig 11 to Fig 15. From the figures, we can see that the apart from some

minor anomalies, in most cases the threshold values could satisfy the activity conditions.

Acceleration of participant SE06 Fall forward while walking caused by a slip

Aevrwration 44t

grxr

Sangrpn

Figure 11 (a-c) Acceleration, RMS, Pitch and Roll value of the elderly Fall forward while walking caused by a slip. The red line
in (a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold areas.

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

20

Acceleration of participant SEO6 Fall backward while walking caused by a slip

Er——

!

r

ﬂ" "L "% Y
1 fy |,| 4

L ';']

| \
A ¥
LA .'\uﬂ.‘t
)

Figure 12 (a-c) Acceleration, RMS, Pitch and Roll value of the eIderIy Fall back while walking caused by a slip. The red line in
(a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold areas.

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

21

Acceleration of participant SED6 Fall forward when trying to sit down

S et N Pl P T 10

Figure 13 (a-c) Acceleration, RMS, Pitch and Roll value of the elderly fall forward when trying to sit down. The red line in (a)
denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold areas.

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

22

Acceleration of participant SE06 Fall backward when trying to sit down

!I"l‘ﬂ'

Rarwieestion (g}

P oy Sbes Pt miw b st Ty dman

- - S, - - - W - = = -a -

Figure 14(a-c) Acceleration, RMS, Pitch and Roll value of the elderly fall backward when trying to sit down. The red line in (a)
denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold areas.

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

23

of SEOG Fall while sitting, caused by fainting or falling asleep

RS

slll

Acrmieration i)

¥ 6‘.‘.‘ g . el s PP T o s s
" i — - 3 R - Aol , pnianda RS
{ g e PSP o - e
Mﬂ . ﬁi ~
R ¥ Lot . o

w 3 wr = = T) = = = =

Figure 15 Acceleration, RMS, Pitch and Roll value of the elderly fall backward while sitting, caused by fainting or falling
asleep. The red line in (a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the
corresponding threshold

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

24

5.3.1.5 Case study: Young Adult

For our second test to verify our fall-detecting thresholds, we are choosing a young adult. The
description of the second test subject is as follows:

Table 7 Details of the second test subject

Gender Female

Age 30 years old
Height 150 cm
Weight 42 kg

Comparisons of the chosen threshold against some primary falls and primary ADLs of the
subject are given from Fig 16 to Fig 19. From the figures, we can see that the apart from some
minor anomalies, in most cases the threshold values could satisfy the activity conditions (next

page).

25

Acceleration of participant SAZ0 Walking slowly

gre:

B8 8 ity AT gy ey
[T TR p—

Mw lull "}u \JENH U h & M \!\

Figure 16 (a-c) Acceleratlon RMS Pitch and Roll value of the adult subject walking sIowa The red line in (a) denotes the

RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold areas

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

26

Acceleration of participant SA20 Walking upstairs and downstairs slowly

!l!l

'L" l: .Hﬂ.'*w".’- i
IWJ-JJ“ i"tuk‘l\fhﬂ“‘hu l'J J “ I\; \1‘pi'v“;“m%'l'f“ﬁiu}ry’%llﬁiﬁvﬁf .,""L‘q"ﬁ-""“

Figure 17 Acceleration, RMS, Pitch and Roll value of the adult when walking upstairs and downstairs slowly. The red line in
(a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold areas

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

27

Acceleration of participant SA20 Slowly sit in a low height chair, walt a moment, and up slowly

’ i
n’m’f F "h\-,, .
ol , o ““‘ﬁf;}" 1 waw‘%’ : *‘.‘MWKWW e
N" ‘Ma_ﬁ,
- _ W ;mw \\A W,,»_r.a"
al | . ;”"- by _ M|
; : i
/ \ LY
f;_-‘ }, '\-‘-f‘“‘\q
: A
’ mmmm O WMWM Py N

- oy o b ST vt b 18 b b e e, i s

Figure 18 Acceleration, RMS, Pitch and Roll value of the adult subject slowly sit in a low height chair, wait a moment. The red
line in (a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold

areas

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

28

SA20 Sitting a

Iying quickly, wakt a moment, and sit again

-

Figure 19 (a-c) Acceleration, RMS, Pitch and Roll value of the adult subject sitting a moment, lying quickly, wait & sit again.
The red line in (a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding

threshold areas

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

29

Fall comparison: Comparisons of the chosen threshold against some primary falls of the
subject are given from Fig 20 to Fig 24. From the figures, we can see that the apart from some
minor anomalies, in most cases the threshold values could satisfy the activity conditions.

Acceleration of participant SA20 Fall forward while walking caused by a slip

élll

L]

.\\.!'_ e

| ,Hﬂh

s

— iy \"”‘

¥

I
Ly I !
- ___,f'p.:'_».‘lka’1f‘-"“-l\.’-"n’p"hl'p“l.",,"’f\"}":-I!'\f. J‘ W 1

Figure 20 (a-c) Acceleration, RMS, Pitch and Roll value of the adult fall forward while walking caused by a slip. The red line in
(a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold areas.

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

30

Acceleration of participant SAZ0 Fall backward while walking caused by a slip

AT AAIA LR

WA TN

i B . oo
[

|

y CEL P
f.4d Ml r } i It II I".
i wﬂlwﬁ)j|_ AHI\ Aﬁ.‘ ‘J*f\-) !.1_:' h'r' 1jl,ﬁ! i‘\",.’ H,". {

Figure 21 (a-c) Acceleration, RMS, Pitch and Roll value of the adults falling back while walking caused by a slip. The red line
in (a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold areas.

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

31

Acceleration of participant SA20 Fall forward when trying to sit down

‘I’I’

w
-

el]

Figure 22 (a-c) Acceleration, RMS, Pitch and Roll value of the adult fall forward when trying to sit down. The red line in (a)
denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold areas.

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

32

jon of participant SA20 Fall back when trying to sit down

8 S Pt s e 48

Figure 23(a-c) Acceleration, RMS, Pitch and Roll value of the adult falls backward when trying to sit down. The red line in (a)
denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding threshold areas.

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

33

Ac of SAZ0 Fall while sitting, caused by fainting or falling asleep

Figure 24 Acceleration, RMS, Pitch and Roll value of the adult fall backward while sitting, caused by fainting or falling asleep.
The red line in (a) denotes the RMS threshold, while the green zones in the pitch and roll plots denotes the corresponding

threshold

Plot Labels Color
a Ax Blue
a Ay Green
a Az Cyan
a RMS Magenta
b Pitch angle Green
c Roll angle Cyan

34

5.4 Sensor in general context of application

To solve real-world problems, conduct operations in different aspects of our lives and to learn
and get values from any physical quantities, sensors are required. Sensors can convert any
physical entity (temperature, heat, magnetic field, motion etc.) into electrical signals.

In the context of ambient assisted living, sensors are extremely important. Ambient Assisted
Living (AAL) is the area to create smart technology-based solutions for the assistance of people
in their day to day lives. Applications in this area includes elderly assistance and monitoring,
baby monitoring and nurturing, remote household monitoring and controlling and so on.
Interests into this sector are rising significantly in the recent years [11] due to rapid
advancement of smart systems and loT.

|4
n

Interest aver time

Figure 25 Interest of fall detection over time, from January 2004 to December 31, 2020. The data is taken from Google Trends
with the search topic “fall detection.” The scale is normalized from 0 to 100 [17]

Elderly fall detection has remained an ever-challenging problem in AAL. Numerous research
and solutions have launched in the market to tackle this challenge. Since the motion pattern of
our body is inherently dynamic, the complexity of designing any solution is extremely high.
Currently, four types of fall detection methodologies are used [18]. They are as follows:

e Wearable sensor-based fall detection
e Visual sensor-based fall detection

¢ Ambient sensor-based fall detection
e Sensor fusion

Wearable sensor-based fall detection is regarded as one of the key types of sensors and is
widely studied, due to the advantages of cost-effectiveness, portability, mobility, and real-time
feedback capability [11]. One can detect anomalies in the motion and activities of human being
by sensing the acceleration, angular motion, pulse and body pressure via accelerometers,
glucometers, gyroscopes, pulse sensors and so on [19, 20].

35

5.4.1 General requirements of the application

Temperature sensitivity

In general, accelerometer (piezoresistive, piezoelectric or capacitive) type sensing for fall
detection using threshold-based method depends on the following parameters:

Frequency response
Sensitivity

Acquisition sensitivity

Noise

Vibration and external pressure
Filtering

Resolution

In the context of piezoresistivity, the following additional parameters are also significant:

Choice of piezoresistive material (p/n type, Si-crystal orientation etc.)
Dimensions

Mode of operations

Time frame

Alarm threshold

Some important parameter considerations for our design are given below:

Noise handling: Since the range of our measurement of acceleration is lower than other
contexts and the dynamic factor of humans are significantly high, a lot of noise or
corrupted data can be found during measurement. Thus, improving the resolution and
maintain the stable margin is significant for our process. Factors such as EMF,
mechanical vibrations, material issue can be significant.

Therefore, our design also includes a filtration subsystem that will filter out the external
noise components. Internal noises can be mitigated during the sensor design and
fabrication part.

Sensitivity: The sensitivity of an accelerometer is defined as the ratio of the electrical
out to the mechanical out. Depending on the choice of unit, it is either expressed by pC/g

36

Vi.

(pico coulombs-per-g) or mV/g (millivolts-per-g). Since piezoresistive accelerometers
offer low sensitivity, external amplifying sub-system is required [21]. In the case of fall
detection, we are interested in the sensitivity across all the axes of the sensor.
Therefore, for each axes the measurement of transverse versus axial sensitivity is
important, and their tolerances should be limited between 3% to 5%.

Acquisition sensitivity: As already discussed, acquisition sensitivity is extremely
significant to acquire and produce response in near real-time, since our problem deals
with the factor of human health. This sensitivity depends on the frequency response,
system clock and power supply to the device.

Mode of operations: Since using accelerometers fall needs to be detected from
multiple postures and trajectories, it is necessary to learn the mode of operation of the
designed solution. Through this parameter, users will be able to know the real-time
detection limitations when the device will be used.

Time frame of fall: In threshold-based designs, time frame is an important parameter
choice to be considered by the designers, as well as for the user. Through this
parameter, users will be able to know the detection speed of falls, and swiftly an SOS
call is going to be launched to the concerned people. As described above, this time
frame has to be decided by the designer via observation or using advanced
methodologies, such as machine learning.

Cost: Accelerometer sensors suitable for fall detection are widely available now a days.
Accelerometer-based fall detection solutions are becoming popular among the elderly
people due to the cost-effectiveness. Prices of such solutions for general people ranges
from $88 to $330 in the market [9, 10, 22]. Products and startups such as Wellnest,
Tango Belt, Hip’Safe, Smart Caregiver are some of the widely popular products leading
today’s market [22].

37

5.4.2 Smart sensor in a more complex system

The system implementation includes acceleration sensing, signal condition and decision making
which is shown in the figure below. When the person is experiencing fall, there is a sudden
change in acceleration which can be detected by the piezoresistive sensor through change in
resistance AR. Using the op-amp, the change is resistance is converted into voltage and then
amplified as the converted voltage is very less for the VCO. VCO converts this amplified voltage
into frequency which is then fed to the digital system.

12C protocal

Analog circuit
= Experiencing changs = Decision makeing

in acceleration
= Amplification of the

= Convertingthe resistance

acceleartioninto . =
resistance onverting into
pulses

=

Figure 26: System implementation for fall detection

For the communication between analog front end and digital system, 12C protocol is used. 12C is
a serial communication protocol therefore the data is transferred bit by along a single wire. Also
the 12C is synchronous which results in the synchronized output of bit. The micro-controller uses
the algorithm to decide based on the sudden change in acceleration. If the acceleration is
accounted higher than the threshold acceleration, then the fall is detected which sends an alert
in the form of an alarm.

38

5.5 Model Specifications

5.5.1 Theoretical Background

yll
- x >
N /
[= 7 RM Y
RN
¢‘ >
F

Figure 27: Cantilever loaded with point load

For a beam loaded with a force F at its end, as shown in figure 3.1, the moment is given by [23]:

a’y _
El—— = —Fx (5)
Integrating w.r.t x and we get

dy _ —Fx?
El—-=——+A (6)
Integrating again and we get
Ely="2 4 ax+ B (7)

6
Applying the boundary conditions:

At x=L, y=0 (no deflection)
At x=L,
dy
v 0
Substituting x=L and Z—i’ = 0 in equation (6). This gives

_ 2
EId_yzi_{_A
dx 2

FL2
hence A = -

Substituting A = FTLZ y=0 and x=L into equation (7) and the equations become

dy _ —Fx? F_L2
EIE =——+- (8)
-Fx3® FL?x FL®
Ely = A T (9)

39

Since we need the slope and deflection at the end of the free end where x=0, we must
substitute x=0 into equation (8) and (9) equations

Slope at free end:
dy _ FL?

dx _ 2EI (10)
Maximum deflection at free end

3
y=-- (11)
Here, the spring constant, k, of the bending beam can be found as
F=% (=)

3EI
= k=2 (12)

Spring compliance is the inverse of the spring constant; S= % where E is the Young modulus

of the cantilever material, and | is the second moment. Here, for the rectangular cross-section of

the beam,

- (13)
where a and b is the thickness and deflection y<<L

Another important parameter is the maximum strain under a given load. The beam experiences
maximum tensile stress at the fixed top end of the beam. Hence, maximum tensile strain is also
experienced at the place of maximum stress. This value of maximum strain, &,,., iS given by
[23]:

Lb

€max = EF (14)
Using equation 12 in 14

b
€max = 32721 (15)

When a piezoresistor is placed at this zone of maximum stress, the piezoresistor undergoes the
same stress. This applied mechanical stress induces a proportional alteration of material
resistivity in the piezoresistor.

If a relatively long and narrow resistor is defined in a planar structure (where thickness is in
order of half a micron), then the primary current density and electric field are both along the long
axis of the resistor, which do not coincide with the cubic crystal axes. This situation helps the
piezoresistive coefficients, which are derived from the field-current relationship, to be simplified

as [24]:
A?R = m0; + T, 0; (16)

Where R is the resistance of the resistor, and the subscripts / and r refer to longitudinal and
transverse refer to stresses along the resistor axes. These coefficients in silicon depend on the
crystal orientation and the dopant type as listed in Table 8:

Table 8: Room- temperature coefficients for n-type and p-type silicon

[1- l{}"l'I m?/N] [1-10-""m?/N]
p-type 7 -1 In < 100 > direction
72 -66 In < 110 > direction
n-type -102 53 In < 100 > direction
-31 -18 In < 110 > direction

40

From the spring-mass-damper representation of a piezoresistive cantilever accelerometer, the
undamped resonance frequency, or the natural resonance frequency, can be derived as [25]:

K

wn= [E (17)
1 [k

=>f = Tmlm where 2nf = w,

Spring compliance k = 1/ . 1, from eqn (12)
F=t | L (18)

21T SXm

A LabVIEW GUI was created as an optimization tool that achieved the resistive change
between 0.2-0.3% as a function of geometrical dimensions. Figure 28 shows the LabVIEW GUI
while Figure 29 displays the block diagram of the code

a Fesind Ponel o fol § - A =
O N P gl Vi g Yy .
® & N Upthsphamcatent = | fov - HEe OB rp— a t@

Figure 28: LabVIEW GUI to Optimise Calculations

41

a

M. stress

Spring Cemplisnce

Frequency

Figure 29: LabVIEW Block Diagram of code

Structure Length (x) (um)

Width (y) (um)

Thickness (z) (um)

Cantilever (neck)

300

15

3.5

Console Mass 300 300 100
Piezoresistor 5 10 0.282
Trench 650 650 120
Model Domain 1000 1000 120

With the values from Table 9, the accelerometer was designed in Ansys Design Modeler.

Table 10: Constants for theoretical calculations

Acceleration threshold

0.9g (g=9.81 m/s?)

SiO, Density 2220 kg/m3
p-type Si Density 2329 kg/m3
Young Modulus (Si) <110> 169 Gpa
Young Modulus (Si0;) <110> 75 GPa
Piezoresistive coeffficient -66E-11 m2/N

Here the Piezoresistive coefficient was chosen as -66E-11 m?/N since the location of the
piezoresistor is transversal to that of the cantilever [24]. -66E-11 m?/N is the transverse
piezoresistive coefficient. To calculate the resistance change in equation (16), we ignore m;,
since the stress experienced by resistor will be in the transverse direction to its axis. Hence

equation (16) reduces to A?R =m0, , where

O = Esigmax

42

A

= R T[tEsiEmax (19)
AR 3by

= R Tk

This is the stress experienced by the resistor in the resistor that induces a resistance change
due to the piezoelectric effect.

Figure 30 displays how the piezoresistive coefficients must be chosen to determine the stress
and strain in resistor according its placement with respect to the cantilever

Maximum Surface Stress
Proof Mass

Side
Flexure

Longitudinal

— ¥ T] 1w

__]—1— View

— Transverse
71—’ Top

Figure 30: Lateral and transverse piezoresistor placements in a bending cantilever
Table 11 displays the calculated values from LabVIEW GUI.

Table 11: Calculated values from theoretical analysis (LabVIEW simulation)

Calculated value Vaule Unit
Force 1.85065E-07 N (kg.m/s?)
Pressure 2.128 Pa
Deflection of 4.14E-07 M

cantilever [s]

Strain 2.417E-05
Stress Parallel 4.085E-06 Pa
Resonant Frequency | 734.65 Hz
Spring compliance [S] | 2.239 N/m
Moment of Inertia 5.534E-27 Kg.m?

[neck]=ab3/12

43

4p 0.269

%

5.6 ANSYS Model preparation

5.6.1 Geometry for the model

As mentioned in previous sections, three accelerometers will be positioned so as to detect the

acceleration changes along the x, y and z axis with respect to a person’s posture. However, the
geometry for all three accelerometers will be the same since the acceleration threshold for a fall

event along all three axes are the same, i.e. 0.99g.

The geometry of the accelerometer is a typical cantilever neck attached to a silicon body. The
body is a 1000 ym X 1000 ym X 120 um rectangular body with a trench of 650 pm X 650 uym
etched in the middle. Attached to the cantilever tip, is a console-head of 300 yum X 300 um X
100 uym volume. A piezoresistor of dimensions 5 ym X 10 ym X 0.282 ym is placed at the

cantilever base. When the console-head undergoes a force due to acceleration, the force on the

tip of the cantilever due to the console-head can be approximated as a transversally loaded

beam cantilever problem.

The geometry was designed through a set of parametric values to simplify the task of geometry

generation and subsequent simulation. The defined parameters are shown in Figure 31.

44

.

00 RIE 100,00 (um)
200 7500
(b)

(c)

Figure 31: (a) Parameters in X-Y plane (b) and (c) Parameters in X-Z Plane

The bulk was made of silicon. A thin layer of silicon dioxide SiO» surface (oxide thickness)
covers the top of the console-head, the neck and the frame. A square trench of Silicon is etched
in the body. The neutral plane of the neck and head is parallel to the oxide-surface.

5.6.2 Meshing

For meshing, a dominant hex method was employed for the console, resistor and the neck, with
the entailing default values. Mesh element size of 2um was chosen for the resistor element
while element size of 5 ym was chosen for the neck and console. For the silicon bulk, the
element size was chosen automatically by Ansys. Element sizes were chosen smaller for neck,
resistor and console regions to capture as many variations as possible. Meshing was conducted
in the order

i. Console 1, 2 and 3 (includes console-head and SiO- layers)

ii. Resistor

iii. Neck 1 and 2

iv. Remaining domains

45

Figure 32: Meshing for whole structure top View (Air is hidden)

Figure 33 shows the detailed meshing in the piezoresistor region.

(b)

Figure 33: Meshing in piesoresistor region

5.6.3 Test Load analysis

The Test Load analysis required a pressure value that corresponds to the acceleration of 0.9g
on the console-head. This was calculated as
F =mconsore@

p=

, Where Aconsote 1S the surface area of the console along the x-y plane

Aconsole

Pressure was calculated as 2.128 Pa. This is equivalent to the fall impact acceleration of 0.9g.
The cantilever undergoes a a total deformation of 1.733 ym as shown in the figure 34. Figure 35
shows the corresponding strain from the fall event.

46

ANSYS

2020 A2
ACADEMIC

Graph » P OX Tebulsr Duts
trimation |4 b [B] M [E]E 2fmme - 25ciwe - B GE> 25 - 5| e i |7 M {7 “"""'“"‘3""“:M_
A 2 o 173 11188

. Figure 34: Total Deformation under test load of Pressure 2.128 Pa

ANSYS

2020 R2
ACADEMIE

150.00 450.00

Graph « 3 OX Tabular Dats *30Ox
Aniation [4 5 [H]#1 z'm 30 Frames ~2secihe) | B HE : | Time js] | [Minamum fumum |[# Masimum v |[7 Sxerage fismiamg
o . ll‘. 177636 004 2,95018.00% 253880 008
—Hh e =-Ele ol

. Figure 35: Total strain under test load

5.6.4 Comparison with theoretical calculations

Table 13: Comparison of Theoretical and Simulated results of structure under test load

Theoretical Simulated
Deflection 4,143 um 1.733 um
Strain 2.417E-05 2.9501E-05

47

5.6.5 Element load analysis

In the element load analysis a pressure of 1kPa and acceleration due to gravity, g, was applied
in the z-direction (perpendicular to console-head). Application of accelerations caused a
maximum displacement of 1.8424 ym a shown in Figure 36. This means that gravity can have
considerable effect on the sensor performance.

Unit

“Time: 1
T0/31/2020 11:58 PM
1804 Max
1411
1.2z
1035

0.BtEad
o.ENa13

DT
0 Min.

Figure 36: Total Deformation under Element load (Acceleration =g)
Figure 37 shows deformation due to application of 1kPa Pressure.

Figure 37: Total Deformation under Element load (Pressure = 1Kpa)

Results from Test and Element Analysis
From the Test and Element Load analysis, it is seen that the results when the
threshold acceleration of 0.9g and the gravitational load of 1g produced almost

48

similar deflections. This indicates that gravity can have a significant effect on the
device performance. A solution for this will be later proposed in the project.

Table 14: Comparison of results of Test Load and Element Load.

Test Load Element Load

Deflection 1.733 um 1.8424 um

5.7 ROM of the MEMS device

Next Modal analysis was performed after choosing relevant master nodes. The procedure is
detailed below.

5.7.1 Modal analysis with the modal contribution factors

Modal Analysis was performed for 9 modes, the details of which are obtained from Solution
Information as shown below:

TOTAL NUMBER OF MODES DEFINED FOR ROM TOOL = 9

MODE 1

MODE ID =1
RELEVANCY = DOMINANT
FREQUENCY = 429.43
DAMPING RATIO = 0.0000

LOWER BOUND DISPL. = -14.706

UPPER BOUND DISPL. = 14.706

MODAL SCALE FACTOR = 0.68000E-01

NUMBER OF STEPS IN FIT RANGE = 11

LAST AUTOMATED SELECTION PROCEDURE DETERMINED
A MODAL CONTRIBUTION FACTOR OF 99.571 PERCENT

MODE 2

MODE ID =2
RELEVANCY = UNUSED
MODE 3

MODE ID =3
RELEVANCY = UNUSED
MODE 4

MODE ID =4
RELEVANCY = DOMINANT
FREQUENCY = 5012.8
DAMPING RATIO = 0.0000

LOWER BOUND DISPL. = -0.29412

UPPER BOUND DISPL. = 0.29412

MODAL SCALE FACTOR = 3.4000

NUMBER OF STEPS IN FIT RANGE = 5

LAST AUTOMATED SELECTION PROCEDURE DETERMINED
A MODAL CONTRIBUTION FACTOR OF 0.36863 PERCENT

MODE 5
MODE ID =5
RELEVANCY = UNUSED

MODE 6
MODE ID
RELEVANCY

MODE 7
MODE ID
RELEVANCY

MODE 8
MODE ID
RELEVANCY

MODE 9
MODE ID
RELEVANCY

= UNUSED

7
= UNUSED

8
= UNUSED

9
= UNUSED

From the above details it can be concluded that Mode 1 contributes the most to the device
performance with a contribution factor of 99.571%. Mode 4 contributes too, but only with
0.36863 %. Rest of the modes are unused and can be discarded for future steps. Hence, for

ROM model generation Mode 1 and 4 are chosen. Figure 37 and Figure 38 shows deformation
due to Mode 1 and 4 respectively.

ANSYS

2020 R2
ACADEMIC

175.00 525.00

Figure 38: Structure movement in Mode 1

50

ANSYS

2020 R2
ACADEMIC

¥
C
0.00 350.00 700.00 {um) o
I 0O O

175.00 525.00

Figure 39: Structure movement in Mode 4

Graph »* 0L O X Tabular Data
Animation | B !i | DI 20Frames v|2Sectaute) ~ B Q> EE | v ;Moue||§'r‘ Frequency [MHz]

et 1 4.2944e-004
1. 2]2. 13520003
0.98055 3]3 2.1707e-003
i 44 5.0128¢-003
o 5ls. 1.7316e-002

s sle 01406

7|7. 02578

i 8ls. 070577

l I 9 19, 0.98055

0. = =
1 2 3 4 5] 7 8 9

Figure 40: Contribution of Modes to Structure movement

Next, Mode 1 and 4 are chosen as the dominant modes in the ModeSelect script, as shown in
Figure 10. Mode 1 is set as DOMINANT while Mode 4 is set as RELEVANT due to their obvious

contribution reasons.

RMMSELECT, 3, "tmod’, -15, 15

RMMLIST

RMMRANGE, 1, 'DOMINANT',,,€,0.05 luse € steps for mode 1
RMMRANGE, 4, 'RELEVANT',,,5,0.08 luse § steps for mode 4
RMSAVE, file, rom Save ROM database

Figure 41: Choosing Modes for ROM generation

51

5.7.2 Defining relevant master nodes of the investigated structure

A total of 9 master nodes have been selected for the next section of ROM Analysis (9 is the
maximum limit of nodes that can be selected).

e Three nodes were selected along the resistor mid-axis

¢ One node was chosen at the tip of console

¢ One node (Node G- mn8) was chosen at tip of cantilever, near the neck-console

junction
¢ Rest of the nodes were chosen along the mid-line of the neck

Figure 42 shows the selection of nodes on the structure.

ANSYS
2020 R2

ACADEMIL

52

ANSYS

2020 2

ACADEMIL

(b)

Figure 41: Placement of Master Nodes on the structure

5.7.3 ROM generation

ROM Model was successfully generated with the following element nodes
e Pressure- 1kPa
e Acceleration- 9.81 m/s?

The files, file.rom and file_104.pcs were generated in the solver directory. These were used for
the SSIT simulation subsequently. Besides these files, other generated files were used too, to
obtain graphic representation of some of the analysis on master nodes through ANSYS
Mechanical APDL. Apdl scripts were written for the following simualtions in the next section.

5.8 Node and displacement analysis

5.8.1 Moving margins of the device

53

A typical fall event occurs when the device undergoes an acceleration of 0.9g. In this section,
the accelerometer performance is analysed under a typical fall event.

From Figure 43, it is seen that the maximum deflection of the cantilever and proof mass is
contained within the trench thickness. Also, there is enough space between the Silicon body
and the console-head in the trench that prevents their contact during the fall event. Thus, it can
be concluded that the device will perform as expected during the fall.

Time:1 .
IVERE 1STEM

11186

Figure 42: Deformation of Structure under 2.128 Pa Load (0.9g acceleration load)

5.8.2 Master node displacement vs pressure analysis

Once the ROM generation was completed, the impulse response of the device was plotted in
Ansys Mechanical to graphically understand the significance of choosing node mn8 (node at
neck-console junction) as the main node to calculate strain in piezoresistor.

From figure 44, it is seen that maximum displacement is provided by mn9. This can be ignored
because mn9 is the node at the tip of the console-head, which is of no importance to us.
Beneath the lime green graph of mn9, the pink graph of mn8 is visible. Here, the device was
subjected to a pressure load of 2.128 Pa.

54

(b)

Figure 43: Master Node Displacements for acceleration ramp

2019 R3|

ACADEMIC

55

Acceleration was applied as ramp to obtain the graph in Figure 44. The input ramp was defined
as a vector from 0 to 2g (approx.. 20 m/s?). The master node dispalcements under the
acceleration ramp input was plotted here. Displacements are negative since the force applied is
in the negative z-direction (on top of the console head).

ANSYS

2019 R3|

ACADEMIC|

(m

!
0
T
L
o
o,
)

Figure 44: Master Node Displacements for acceleration ramp load

Similarly, a pressure ramp from 0 to 2.4 Pa was defined as a vector input to obtain the node
displacements

56

2019 R3
ACADEMI(

Pressure

Figure 45: Master Node Displacements for acceleration ramp load

From the above figures it is seen that our main node of concern, mn8, positioned at the
cantilever tip, provides sufficient displacement similar to theoretical calculations. Thus, values of
displacement from mn8 can be used for subsequent calculations of piezoresistivity change in
SSIT environment.

57

5.9 Determining desired excitation parameters for the MEMS
device

Smart Systems Integrated Test Environment (SSIT) is an in-house developed software. In SSIT
we aim to stimulate in behavioral level to perform system-level specifications. The ROM file
generated from the ANSYS is uploaded to SSIT to perform ROM simulation and Analog
simulation. The results of these simulations are used to develop the digital simulation of the
system.

5.9.1 Simulation preparation- finding the equation for new resistance
value

For nodal analysis, we chose node 28 as it is located on the junction of the cantilever and the
suspended mass where the maximum strain and deflection of the beam is experienced. The
maximum strain and deflection helps on determining the time of simulation. To start with SSIT
examination on analog circuit, the change in resistance was calculated using the formula in
equation (20). This was obtained from equations obtained in section 5.4.1.

2= 200 Bio, * 1 = (—195.195) * U, (20)
Where

B = cantilever thickness

L = length of the cantilever

Esip, = Young modulus for SiO;

m, = piezo co-efficient for silicon

R = reference voltage
However for plotting the equation in SSIT, the Rnew was calculated using the following equation
Ruew = 30000 4+ (—195.195 x U,.) (21)

58

5.9.2 MEMS ROM simulation analysis

The equation above was implemented in the SSIT source code for front impact on the sensor

SET,FIRST Iselecting the first solution subset
*DO,I,1,res
*GET,uxval,NODE, 28,UX lgetting the nodal displacement for the substep

timestamp=t res*I
|rval=38669-(-195.195*uxva1)

*VWRITE,timestamp,rval !write to file

%G , %G
SET,NEXT Iselecting the nex solution subset
*ENDDO

Figure 46: Code for SSIT

The following values were taken into consideration while performing the SSIT.

Table : MEMS ROM simulation settings

Parameter Value
Simulation time [s] 300.00E-03
Impulse width [s] 100.00E-03
Resolution [s] 100.000E-06
Load [kPa] 2.12800E-03
Unused 1.000E+00
SUDa INRK n . BREEES pREHARE A A DKL T HRETE

Figure47: Resistance change

59

In the above figure, it is possible to notice that the resistance is stable after 40ms which
corresponds to resistance of 30.07488 KOhms. Therefore, the change in resistance (as
calculated from the graph in Figure 47) is equal to:

AR 30.07488 — 30.0000

R 30.0000
which shows the resistance change in the range 0.2-0.4% fulfil the rules of a successful design.

= 0.249%

5.10Determining optimal parameters for the analog readout
circuit.

The analog circuit consists of amplifier circuit and the VCO. The acceleration obtained from the
accelerometer is mapped as the frequency change using a VCO. This frequency requires
conditioning of the signal from the piezo resistor as AR. Using voltage divider rule this resistive
drop is converted into a change in voltage. As this signal change is very less for a VCO to
detect, the op-amp is used as an amplifier, remembering that the output of this VCO should
always be in the range of the digital circuit.

F=A+B " Vg n(t)
Voza_ua ()= Vap # Wy - sin{201-4-4)

—a
veo | Vieo ou

=1
)

Rpcaslt} 185V

GND rom_outpul.csy analog_output.csv
i i
recent_fime recent_time
recent_resistance recent_value

Figure 47: Analog circuit in SSIT

At 0 acceleration, the value of the piezo resistor is found to be 29KOhm. The amplifier input
voltage is calculated using the equation given below. The voltage divider rule is applied to get
that equation (22) where Rreris equal to Rpiezo. The output of op-amp will be 0 when there is no
deflection in the cantilever beam.

_ Vdd*Rpiezo
Vammn B Rref+Rpiezo (22)
Vampy, =V + =V (23)

The maximum change is resistance due to acceleration is 0.247% which is equal to 71ohms.
This change in resistance changes the Vamp_infrom 1.65V to 1.652036V.

60

The gain is calculated using the equation (24) given below to get an output voltage as -3V from
the amplifier.

A= o (24)

vt-v-

=> ———— = 1474
To determine the design parameters for VCO the following equation (25) is used
f=A+Bx V;zcoin (25)
Where A = tuning frequency,

B = tuning sensitivity,

Vveo_in = VCO'’s input voltage = amplifier's output.
The frequency range should be defined corresponding to Vyeo in = Vamp_out = -3 t0 0 V. The digital
system should be able to detect this frequency range. Considering this range, at the maximum
frequency Ve in = OV, therefore A = 10KHz, and at minimum frequency at Ve, in = -3V so B =
5KHz.
So the VCO parameters are found to be:
A = tuning frequency = 10KHz.
B = tuning sensitivity = 5KHz.

ZPUS | hBX - - ANFEEdpREHARAAA DKL HASDE

Figure 48: Analog simulations in SSIT

61

5.11Determining parameters for digital circuit.

The digital circuit performs the fall detection and triggers alarm during a fall event. It
receives filtered and amplified sensor signals from the VCO, and if the signal value and
frequency surpass the derived thresholds for the project the digital circuit will send a signal to
the alarm circuit to trigger the alarm. The alarm will run continuously for 10 minutes until a
concerned person comes and stops the alarm using the stop button attached to the device. The
time frame chosen earlier will be added with two sub-windows at its lower bound and upper
bound, and that will be used to measure and analyze the acceleration data.

The VCO signal sampling rate will be determined using a counter. The measuring time window
of the signal is crucial to the instant response of the device. The system frequency can be
calculated using Nyquist sampling theorem:
f:S‘ 2 2 * Fmax

using this formula, we choose our system frequency 2*247 Khz=494 Khz
However, corresponding to the clock generator for the designed hardware and to supply the
system with safe frequency we are choosing 120 MHz as the system frequency.
Taking a time window of 0.5 ms and system frequency as 120 Mhz there will be around 60000
cycles per window. The input frequency from the analog circuit for max. acceleration will be 10
MHz, or 5000 clock cycles. A summary of the digital specification is given below in Table 8.

Table 8 Parameters for the digital circuit

Parameter Value

System frequency 120 Mhz

Time window 0.5ms

Input frequency range 10 MHz to 25 MHz
System cycles/window 6000
Cycles/w[ndow for Max 5000

acceleration

Size of counter 14 bit

The algorithm for fall detection in the digital part is shown in the figure 29:

Define time :
window for data Define a time Evaluate VCO &

read (2.364 ms) frame to store the cycles of Compare with Generate alarm
data & analyze the thresholds

frequencies
the thresholds i

Measuring
window

Time frame

62

Figure 49: Algorithm for the digital circuit

5.12Fabrication and Packaging of MEMS Device

5.12.1 Fabrication

Equipment required for the fabrication and packaging of the sensor include:

e Photolithography setup (Spinning unit, Heating unit for dehydration, UV light exposing
Unit)

e Etching Tank for wet etching.

e STS Pegasus for DRIE or any other Bosch DRIE equipment.

o Measurement and characterization equipment for inspection of etch grooves and
microstructure.

e CVD chamber for Deposition.

Materials required are silicon, aluminum for contacts and glass for packaging. Chemical
Solutions used include acetone and distilled water for rinsing, 1-methoxy-2-propanol acetate
(Developer solution), KOH for wet etching, acetone, Su-8 photoresist.

The following steps should be taken to fabricate the sensor: [26-33]

a. Wafer specification: The fabrication process starts with deciding the wafer
specifications. We propose using a Double Sided Polished (DSP), n-type silicon wafer
with 110 orientation. [33]

b. Oxidation (initial masking oxidation): This is growth of thin layer of SiO2 by means of
Thermal Oxidation (wet and dry oxidation). For thick oxide layers, wet oxidation is
preferred, but however we are required to grow a thin layer. We recommend that dry
oxidation process be used, or quick dry oxidation done before and after wet oxidation.

Growth of oxide layer, SiO2

Figure 50: Oxidation

c. Next step is to create a Silicon on Insulation Layer by deposition of silicon. Deposition of

Silicon is done using the Plasma Enhance CVD method in a vacuum and annealing
afterwards.

63

d.

e.

f.

Deposition of Silicon

On Insulator (SOI) —,

layer

Figure 51: Deposition of Silicon on Insulator layer

The Piezoresistive layer is created by doping with Boron. This could be done by lon
Implantation.

f Boron Implantation

" boronp ton :“f"")‘""" — borondrivein

|beron diffusion)

Figure 52: Ion implantation

The Aluminum pad for connection: Aluminum is used because of its good conductivity
and ease of deposition. It has good bonding with SiO2. There are several methods for
creating aluminum connection pads. We suggest the use of PVD methods such as
sputtering or coating.

Al

interconnects Boron Doped Si Layer

Isolation Si02 /

Figure 53: Aluminum pads for connection

Then the piezoresistive part is etched to specified thickness and dimensions according
to our model.

DRIE

YT YYYPYVFYY YFYYY

Figure 54: DRIE

64

g. The thin SiO2 layer now acts as protective layer for the aluminum pad and piezoresistive
material.

Thin SiO2 protective
layer around the

piesoresistive element DRIE

TYYYTY YYY Y YYY

Flip for
photolithographyon
opposite side.

Figure 55: Protective layer for the aluminum pad and the piezoresistive material

h. The wafer is then flipped for wet etching on the opposite side. The mass dimension is
used to create a chrome-on-glass mask which is used to conduct photolithography. The
photolithography is done to be able to map out dimensions for etching and is shown in
figures 57(a) and 37(b).

UV Light

IRy
L Dy

Figure 56(a): Photolithography on the opposite side using UV light

65

Figure 56(b): Wafer after photolithography

i. Wet etching using KOH is done to form the mass structure

Wet Etching

Figure 57(a): Wet etching using KOH

o

Figure 57(b): Etched wafer

i. The final step in fabrication is to observe the structure realized under a measurement
and characterization equipment. We propose to get SEM images if possible to measure
the actualized sensor dimension and compare against simulated dimension

5.12.2 Packaging:

For packaging, we suggest to use anodic bonding of glass to silicon. This gives a hermetic seal.
We propose die/chip size packaging. [34]

Piesoresitor

Aluminium

Ve \

Glass

Figure 58: Packaged sensor

66

6 WP2: Analog circuit design

6.1 Overview

WP Leader

Pallavi

Rakin

Ankita

Faith

Ankita
Rambhal

30

SUM
Workload:

40

Duration:

14

Objectives

Tasks

Designing an analog operational amplifier circuit which is able to gain the signal
from the MEMS sensor and drive the A/D stage.
Create an analog cell containing the application-specific amplifier circuit

Create the specification of the amplifier based on the output signal of the sensor
and the input signal of the A/D converter (e.g.:amplification, bandwidth)

Perform some hand calculations to determine the main properties of the amplifier
Draw the schematic of the amplifier using Cadence Virtuoso

Perform the required simulations

Determine the main properties of the amplifier

Perform the Monte-Carlo simulation to determine the input offset

Create an analog cell for the amplifier

Perform simulation using the amplifier in feedback configuration

Create an analog cell for the amplifier with its feedback network

Validate the operation of analog cells

Deliverables

D2.1 The schematic of the amplifier with the size of the transistors and operating
point parameters (model parameters, operating points of transistors)

D2.2 Bode-plot of the amplifier (with and without frequency compensation)

D2.3 The results of the transient analyses

67

6.2 Description of analog circuit design

6.3 Description of analog circuit design

After completion of MEMS design of the fall sensor, the next section deals with designing an
analog circuit capable of translating the resistance change of the piezoresistor to voltage output.
The piezoresistor is a part of a voltage divider that is connected to an Operational Amplifier. The
change is piezoresistivity leads to a certain voltage output amplified by the Operational
Amplifier. This is then fed to the input of a VCO whose instantaneous oscillation frequency is
determined by the input voltage. This frequency enables the operation of the consequent digital
circuit. The operational amplifier has been designed with LTSpice software here.

6.3.1 Absolute and relative mismatch

Major impediments to circuit design of converters, current mirrors, amplifiers, are component
mismatch and noise. Even when components seem to be identically designed, such as
fabricated and biased in the same conditions, they may not have same electrical properties.
This can limit their precision and operation. [1] “Mismatch is the process that can cause time
dependent random variation in physical quantities of identically designed devices. Matching is
the statistical study of the differences between identically designed components placed at a
small distance in an identical environment and used with the same bias conditions.” [2]
There are two types of measuring a mismatch:

¢ Relative mismatch- Here, a difference between two parameters is given as a

percentage.
e Absolute mismatch- the subtraction of two physical values.

— ~ D1
¢ - y
e - D2
- " :
AL _ 200.22=L1 (o5 AD = AD1-AD2 [um]
L L2+11
Relative mismatch Absolute mismatch

Figure: Relative and absolute mismatch [2]

68

Mismatches in identically designed components stem from stochastic or systematic effects.
While stochastic effects lead to real mismatches, systematic effects result in offsets.
o Stochastic effects in matching
These lead to random fluctuation of device properties and are termed true stochastic
mismatches. This is inherent to a device and cannot be eliminated. The main causes
can be irregularities in number of dopants in a channel, irregularities in oxide charges
and interface states, polysilicon gate granularity, dimension effects and series
resistances. [3]
e Systematic effects-
These are differences that gain prominence at larger distances. The offsets stemming
from such effects could be
o Electrical- due to parasitics, for eg., line resistances.
o Technological- these are produced during the fabrication process of wafers or
etching.
o Environmental- usually due to temperature effect on Vr and 3 parameters of
Mosfets or due to mechanical stress effect from packaging [3]
Designing the circuit and circuit behaviour analysis with computer simulations can help to
understand and get an estimation of such errors to an extent.

6.4 Specification of the analog amplifier

While designing the amplifier, the supply voltage was taken to be 3.3V as the nominal supply of
the amplifier. The cut-off frequency should be higher than twice of the dominant mode
frequency. The dominant mode frequency was 495Hz, hence the cut-off frequency was
considered as 1KHz. As there is no negative feedback to the system the open loop gain was
found to be 107 dB which is usually high. After providing the feedback, the amplification was
found to be 102 dB. For the quick response, the system has the slew rate of 14.1 V/us and the
phase margin was encountered as 61.77° which ensures the stability of the system. Following
table summarized the amplifier specifications.

Table: Specifications of the amplifier

Parameter Value/Range
Vbp 3.3V

Open-loop gain 107 dB
Closed-loop gain 102 dB

Cut-off frequency 1KHz

Gain bandwidth 15MHz
Maximum input offset 0.38uVv
Maximum input noise 100nV/sqrt(Hz)
Slew rate 14.1v/us

ICMR- 0.8

69

ICMR+ 3
Phase margin 61.77°

6.5 Analog integrated amplifiers topologies

6.5.1 Overview

The Operational Amplifier, known as Op Amp, is a high gain DC differential amplifier. The Op
Amp is very common in analogue circuitry because of its diverse functionality and its ability to
be designed in different topologies and levels of complexities [1]. The perfect or ideal OpAmp,
which is used/assumed in faster non-refined analysis of complex circuits involving OpAmps, is
an operational amplifier with the following characteristics:

¢ Infinite open-loop gain

¢ Infinite input impedance

e Zero input offset voltage

e Zero output impedance

¢ Infinite bandwidth

e Zero power consumption
However, the ideal OpAmp is only ideal -as the name implies- and, therefore, rarely attainable.
The real amplifier is more feasible and used in actual circuitry. The aim in designing an OpAmp
is achieving said idealness; the ideal OpAmp is ‘exemplary’ and design of a real OpAmp would
require lot of design trade-offs considerations (features to be considered at the expense of other
features). A few of these trade-offs include: stability vs performance, power consumption vs
noise and speed, and other conflicting parameters. [2, 3]
Designers hope to achieve an above-satisfactory power, output drive and noise performance by
engaging relevant amplifier topologies for specified applications.

6.5.2 Operation of Selected Amplifier technologies

The following are the amplifier topologies that are associated with OpAmps and are used to
achieve various functionalities in the analogue circuit.

i) Single Stage Topology
This is the simplest topology. Its simplicity offers high speed however lower functionality. The
gain of a single stage OpAmp is low, and the mirror pole for a single-pole circuit is poor as well.
A schematic representation of this topology is given below

70

° Vout

Fig x: Single Stage Amplifier

i) Two Stage Topology
This topology aims to overcome the short coming of the single stage by introducing a second
stage. This is the most popular topology used in OpAmp design. The two-stage just refers to the
number of gain stages. This topology provides high gain and high output swing. A buffer at
output only needed when resistive loads are used as driver rather than capacitive [4].
The classic Two stage Amplifier usually consists of a pmos differential pair with nmos current
mirrors in first stage and common source amplifier for the second stage. [5]
An example of a two-stage amplifier identifying the stages is shown overleaf.

First Stage: Differential Input

"'\ / Second Stage: Common Source

Biasing Circuitry

Fig. xi: Stages of a Classic Two-stage Amplifier

i) Telescopic Topology
This topology has a relatively high gain; it is important to note that there is difficulty in shorting
the output to the input in this topology. Telescopic OpAmp offers the best compensation in the
trade-off between gain, power dissipation and speed; however, the output swing is very limited.

71

The transformers are literally put on top of each other, hence the name telescopic. Although the
speed is not as high as the single stage, there is less miller effect.

oV,

out

Fig xii: Telescopic cascaded Topology

i) Gain Boosting Topology
This topology is majorly for increasing gain without decreasing output voltage swing. However,
extra amplifiers used in achieving this might decrease the speed of the overall amplifier. An
example of the gain boosting topology is shown in the schematic figure below.

‘_ Rout { Rout

Vee—[o M, o | N7

Vin°_| M1 roq

Fig xiii: Gain Boosting Topology
i) Folded Cascade
This works based on the property of a cascode to be folded. In comparison to the telescopic, it
consumes more power and has greater noise contribution. This topology has fewer transistors
at the output stage and a better frequency Power supply rejection Ratio.

72

Voo
I

Vin °_“:

VO ut

Vin O—I M1

Folding of cascode

Fig xiv: Demonstration of folding of Cascode

Table 1: Summary of comparison between the topologies [1-6]

SN . Amplifier Topologies
Ampllfler Single 2-Stage Gain- Telescopi Folded
Parameters Stage booste c cascod
d e
Gain Low High High Medium Medium
Output Swing Medium Highest Medium Medium Medium
Speed High Low Medium Highest High
Power Dissipation Medium Medium High Low Medium
Noise High Low Medium Low Medium

6.5.3 Two-Stage Amplifier- Topology and Advantages

Considering the requirements of the fall detection system and above comparison table, the two -
stage amplifier was chosen for this project. Two stage amplifiers was chosen because it has
high gain, highest output swing and very low noise. Single stage amplifier was eliminated
because it has very low gain which will not provide us the desired output for the system. Gain
boosted amplifier also has the high gain but it has noise higher than the two stage amplifier.
Among all the amplifier topologies, telescopic amplifier has the highest speed but medium gain.
Hence two stage amplifier is the most suitable amplifier design for this project.

73

Voo Stage 1
— Stage 2

™ e

Figure xv : Two stage amplifier

Figure xv shows the structure of the two stage amplifier. The first stage provides a high gain
whereas the second stage is usually designed to provide high swing. Transistors M9 and M10
are used as output buffer. Transistors M1 and M2 are differential pair of the first gain with
current mirror formed by M3 and M4 as an active load. Transistor M7 provides the biasing to the
entire amplifier. The second stage consists of common-source amplifier (M8) with active load
M5. M5 is used for biasing the gate side.

6.5.4 Determining the transistor sizes and the biasing conditions.

For the design of the amplifier, we used Cadence Virtuoso with 350nm technology. Every
technology has its own specific requirement. For this technology, the minimum channel length of
the transistors must be higher than twice or equal to the 350nm. So, in the circuit, we have
chosen Lmin as 1um. dependent on the technologies, the parameters used for the calculations
are given in the table below.

Table : Technology based transistor’s paramteres

Parameter Value
NMOS Gain factor (Kn) 170 pA/V?2
NMOS threshold voltage Vin 0.5V

74

PMOS Gain factor (Kp) 60 pA/V?2

PMOS threshold voltage Vip 0.75V

Using these values, the calculation was done as follows:

1. Tail Current Calculation
Considering Fmax = 7.5KHz and load capacitance C. = 10pF.
To achieve a good phase margin of 60°, Cc should be taken as =2 0.2 C_

Cc=02x%x C, =02 x10p = 2pF
So,

dv
liqin = CCE = C; XSR
But SR can be given as,
SR =21 X Epgx X Vpp

Here Vpis taken as 3V, then SR = 14.1 V/ps.
Therefore, li = 0.2uA.
Considering i = 1.5uA just to make sure that SR will hold all the time.
Now, the transconductance can be given as
Itail
Von

Iml =

Von is taken as 0.5V. Therefore g,,1 = 30 p4/V

And the gain bandwidth will be

GBW = % = 15MHz

C

2. Size of the differential pair transistors

([) (9,0)

L), 2x1Iys x KPN

w w
(2),- (Z),-
L/, L/,
3. Size of current mirror transistors
Since all the transistors should be in saturation region,
Ves1 = ICMR, — V4
ICMR+ was obtained as 3V after performing the dc simulation considering the size of the
differential pair transistors calculated above.
Also, V, =V, = 0.5V
Therefore,

=352=~=4

For M, transistor,
Vess =Vaq — Vigsy = 3.3V — 2.5V = 0.8V

So the current at transistor M5 can be calculated as

; KPP (W) v V)
=—x|—] x -
3 2 L 3 GS3 t3

But I, = = 0.75u4
So,

(),

As the current passes through M;, M,, M transistor is same, so their size must be equal.

w w w
(2),-(2),~ (), - =
L7/3 L7, L7s
For calculating current mirror Mgy and M-, transistors V;¢; can be calculated from

KPN w)
Ipsy = —/—X (I) X Vgs1 = Vi)
1

2
VGSl = 0.54’V

And ICMR_ was obtained as 0.8V with the same analysis performed for ICMR+.
Vpsary < 0.8V — 0.5V = 0.06V

Hence,

KPN w)

Ipg; = 2 X (T) X (Vgs7 = Vir)
7

w
(—) =424 ~5
L7/

(3),- (),

Since the current in second stage should be I,,;;/2, the size of Mg transistor should be the half

of the size of M,

(),

The following table summarize the sizes of the transistors.

Table: Magnitude and aspect ratios of the transistors

No. Type Ratio Length (um) | Width (um)
M1 NMOS 4 1 4

M2 NMOS 4 1 4

M3 PMOS 10 5 50

M4 PMOS 10 5 50

M5 PMOS 10 5 50

M6 NMOS 5 5 25

M7 NMOS 5 5 25

76

M8 NMOS 2.5 5 12.5
M9 NMOS 30 1 30
M10 NMOS 10 1 10

6.6 Schematic of the amplifier

Considering the above calculated values and the aspect ratios and bias of the transistor, the

schematic was created as shown in figure {A]

Figure A: Schematic of an amplifier

6.7 Performed analyses related to integrated amplifier

a. DC simulation and operating point

DC analysis was done to analyse the operating voltages of the transistors, mesh

current ,branch current and to ensure ICMR range. It was also performed to verify
that all the transistors are in saturation region.

While performing the DC sweep analysis, Vop = 3.3V and lui = lvias = 1.54A was used.
But the transistors were not in saturation region. To bring the transistors in saturation
region, tail current was increased from 1.5uA to 5pA.

77

Figure B: Amplifier in Saturation region

The total gain of the system is calcultated using the formula
Ator = Ay + 4,
Where A1 is the gain of first stage and A2 is the gain of the second stage. These gains were
calculated after performing the dc analysis at vdc = 1.65V.
Gain of first stage can be calculated as
gm1=41.63p gds2 = 65.77n
gds4= 31.03n

Al _ gml

= = 430.06 = 52.67 dB
9as2 T Gasa

Gain of second stage can be calculated as
gm2=36.13pu Qdss = 41.96n
gdss= 18.24n

ng

A, = = 598.5 = 55.54dB

955 T Guss

Calculating total gain
A=A, +A4,=108dB

b. AC simulation

AC simualtion was performed to check the open loop gain of the amplifier and
the phase margin. To perform the AC simulation, small ac magnitude of 10mV
was given to the non-inverting terminal of the amplifier. After the analysis, the
gain was obtained near 107 dB and phase margin was found to be 60°, which
statisfies our requirement.. This shows that there is no need to tuning the
amplifier.

78

|
1..
|
|
|
|
|
|
|
|
|
|
|
|

118 476mda

|
|
|
]
1
|
|
|
|
|

¥
8
L

Figure C: Open-loop Phase and Gain plot

c. Transient simulation
Transient analysis was perform by converting the non-inverting terminal
into sinusoidal voltage source with the amplitude of 10mV and 1KHX
frequency.

Figure D: Open loop Transient analysis

d. Stability simulation
For stability analysis, the amplifier was in closed loop from. A DC voltage
source was added between Vout and inverting terminal of the amplifier as
shown in the figure below.

79

Figure E: Schematic for stability simulation

Stability analysis was done to obtain the closed-loop gain and phase margin
of the system. The gain was found to be 102 dB and phase margin as 60°.

Figure F: Closed loop Phase and Gain plot

e. Monte-carlo simulation
Monte-carlo analysis was done to check the probability of different
outcomes of the system. Following graph shows the outcome of the
system at different conditions.

80

WwDC fvoul™)

o

4
4

T TV N S [

Figure G: Monte-Carlo simulation plot

f. Pvt
PVT simulation was done to test the system in best and worst condition
and to verify whether the system will pass these conditions or not.

Test | Output Nominal Spec. | Weight | Fass/Fail | Min] Max C3583_comer0d]| CI5BI_comerll,

hztestfirstamp_acDc_stb_pvt1 |Loop Gain 102.7 dB
hrtestfirstamp_acDc_stb_pvt1 Phase Margin = 62 24 degres 60

Figure H: PVT simulation results

From the results shown in the figures H and |, we can see that the
amplification of the system can withstand the worst conditions, hence
marked as pass. Whereas, the result for the phase margin test came as
near which shows that the system just met the minimum condition. PVT
simulation is also used to generate the datasheet of the system.

Results Summary \Top

Calculation Exprosiion Targe! Meinkenum Vaive Maximum Vaiue

Figure I: Result summary of PVT analysis

81

6.8 Analog cell creations and validation

After performing all the anaylses, analog cell was created. As shown in figure J, the amplifier
was connect in negatice feedback with the input of 10mV. Resistors RO and R1 are calculated

using the formula

A —1+R1
v RO

Here Av is the gain of the amplifier calculated in section 5.9 which was 1474.
Therefore RO is taken as 5K and R1 as 295K.

Figure J: Creation of analog cell
Figure | shows that the amplifier is working as per the requirements.

Figure K: Transient analysis

82

7 WP3: Digital circuit design

WP Leader <member 1> <member 2> <member 3> <member 4>
<member n> 10 10 10 10
SUM 50 Duration: 14
Workload:

Objectives

e Designing a digital circuit able to determine the frequency of the periodical signal
provided by the A/D converter and implementing a decision circuitry able to
generate an interrupt for the host microprocessor based on the acquired
frequency measurement data.

Tasks

e Create a RTL model of the circuit using the synthesizable subset of VHDL.

e Perform functional verification using ModelSim-Altera with a VHDL-based test
environment.
Synthesize the circuit onto FPGA technology using Altera Quartus II.
Perform static timing analysis (STA) using Quartus Il.
Generate the post-place&route simulation model of the circuit using Quartus II.
Perform timing simulation using ModelSim-Altera with the VHDL-based test
environment used in the functional verification phase.

Deliverables

D3.1 The RTL model of the circuit and the test environment (VHDL source code).
D3.2 Functional verification results.
D3.3 Synthesis summary (resource usage).

D3.4 Post-place&route (timing) simulation results.

83

8 7.1. Determining the system frequency

In the analog design, we designed the analog cell that contained the op-amp circuit to derive the
gain and perform the A/D operation of our designed MEMS sensor. However, we designed the
circuitry for one sensor only, while in our case we would be requiring tri-axial acceleration
measurement. Designing based on one sensor only was adequate in the previous stages,
because the tri-axial acceleration measurement approach will be three-stage scaled up version
of an analog cell containing one sensor, because the threshold and design of only one cell will
be similar to the other cells. [FIGURE] explains our proposed measurement approach. As you
can see from [FIGURE b], the single-axis sensors are assumed to be placed in parallel to the X-
Y-Z planes of the system, in order to combinedly measure the acceleration along all the
directions.

| g e e B 3 P e T T 1
5 sensor 1 (X axis) E E E
E Signal from \ \ Frequency E
! the analog measurng ’
[ce H block A
E sensor 2 (Y axis) E
E Signal from Frequency +| Fall detector E
! the analog measuring block -
[o block '
5 sensor 3 (Z axis) E
i Signai from Frequency
! the analog measunng :
; ce block |

Figure_: Overview of Sensor Design

#

Figure_: Orientation of three sensors for fall detection

Y

84

However, the major implementation will be required in the digital system design part, where we
must consider tri-axial acceleration data. Because our proposed algorithm that detects fall and
ADL (Activities of Daily Living) depends upon this parameter. This means that the digital system
will receive three frequency inputs from three VCOs of the analog cells. [FIGURE]

The designed digital circuit (which will be discussed in this section) is able to detect an ADL
event and can also identify a fall event. On a holistic level, the proposed system operates as
follows:
e Count the number of high edges of each of the three signals within the defined time
measurement window
o If the RMS value of the number of edges is higher than the lower-bound threshold but
lower than the higher-bound threshold then it is an ADL event.
o If the RMS value of the number of edges is higher than the higher-bound threshold then
it is a fall event, and an output signal is passed to the alarm (buzzer).
Based on our derivation of the optimal parameters for the digital system in section 5.9 and 5.10,
the digital system has been designed to detect frequencies in the range from 10MHz to 25 MHz.
Thus, the bandwidth of the system is 15 MHz. Following the discussion regarding the Nyquist-
Shannon’s sampling theorem, the minimum choice of system frequency should be 50 MHz, that
means that our system should be able to operate properly with minimum frequency of 50 MHz.
However, a system frequency of 120MHz was set to provide the system to use the clock
generator in a safe margin, corresponding to an easily available standard on the market. This
means that with our defined time window of 0.5 ms there will be 60000 cycles (rising edges) in
total. The following edge counter thresholds have been considered:
e |If the rms_edge counter is equal to 5000 (corresponding to 10 Mhz) for than one-time
window, then the system will initially characterize it as an ADL.
o If the rms_edge counter is equal to 5000 (corresponding to 10 Mhz) for 5-time windows,
then the system will characterize it as a fall event and the alarm will trigger.
Value 5000 corresponds to 10 MHz of analog design, the highest acceleration value to be
considered for a fall, and the corresponding RMS of the three counters crossing this threshold.

9 7.2. Limitation for fall detection using Cyclone lll
and Quartus Il

Following the discussion of the fall detection algorithm presented in section [SECTION], we
proposed three characteristics to be measured to detect falls, they are: RMS, pitch angle and
roll angle. Although we can measure and synthesize RMS value, we could not design a
synthesizable pitch angle and roll angle measurement mechanism. This is because “real”
number or “real” mathematical operations are not synthesizable. Also, fixed-point function
definition using ALTERA CORDIC_IP to get arctan value based on the CORDIC algorithm is not
supported for Cyclone Il (EP3C16F484) via Quartus Il.

85

107.3. RTL model of frequency measurement circuit

10.1 7.3.1. Frequency measurement
implementation

The 3-channel frequency measurement circuit which characterizes between an ADL event and
a fall event is discussed in this section. The frequency measurement approach chosen for the
project was based on a double flip-flop synchronization mechanism [PAPER]. The mechanism
is described in figure [FIGURE] This mechanism states that, a minimum of 2 stages of re-
synchronization flip-flops are included in the destination domain to avoid issues with
metastability in the destination domain [PAPER]. Different clock domains have clocks which
have a different frequency, a different phase (due to either differing clock latency or a different
clock source), or both. Either way the relationship between the clock edges in the two domains
cannot be relied upon. This is beneficial over a single stage flopping, where two asynchronous
resets could have been considered via an OR gate. Although the single-stage process is
simpler, it will eventually cause:

e Timing anomaly in the measurement

o Clock domain crossing (Metastability) [FIGURE]

D Q

,Ttup Tii |

Hold Time

CLK D input

— >< >< Matesatable!!

Old clock | Metastable New Clock
domain danger region domain
— LA B A [

1 T s

86

e!
o
[=)
h 4
L]
]
o
o
\

Metastable

4

v
o
[=)
v
o
o
v
o
=]

s>, | |—b > >

clk

Metastable

v
o
o
v
=]
]
A 4
o
(=]

Faster
clk

VA

117.4. State machines for frequency measurement

To implement the double-flopping synchronization during edge counting and timer
measurement, two procedures have been followed. They are:

e State machine

e Hand-shaking protocols between the df blocks
State machine divides the edge counting into two logical stages, and hand-shaking protocol
establishes the communication path between the states. The states are:

State_edge_counter Description
Wait_for_start measure Waiting for counting flag to be triggered
Counting Main edge counting stage, checks ack bit

at the same time. If ack is not received,
then the edge counter returns to
‘wait_for_start measure’ stage

The resource declaration for the edge counter FSM is given in figure [FIGURE]. As we can see,
resources have been assigned for all the three-frequency measurement sub-systems.

87

- edge counter resources ---------------

TYPE state_edge counter_type IS (wait_for_start_measure, counting);

SIGNAL state edge counter : state edge counter type := wait for start measure;
SIGNAL edge_counter : INTEGER RANGE @ TO edge counter_max := 0;

SIGNAL state edge counter 2 : state edge counter_type := wait for_start _measure;
SIGNAL edge_counter_2 : INTEGER RANGE © TO edge_counter_max := ©;

SIGNAL state_edge counter_3 : state_edge counter_type := wait_for_start_measure;
SIGNAL edge counter_3 : INTEGER RANGE @ TO edge_counter_max := 0;

The timer measurement is also divided into four stages. The states are:

State_measure_timer

Description

Wait_for_enable_measure

Wait until enable measure flag is
triggered

Wait_for_ack 1

Checks if the 2nd ack for edge counter is
received. If true, then move on to
measure_timing, else wait

Measure_timing

Increase time counter if time_counter is
less than time_counter_max. If
time_counter is equal to
time_counter_mag, then reset time counter
and enable_edge_counter flag, and move to
wait_for_ack_2 state

Wait_for_ack 2

If the 2nd ack for edge counter received
is 1, then wait until it turns to zero. When
it becomes zero, then trigger
transmission flag, assign new_data if
fall_adl detected is 00 and return to the
initial state of the timer

The resource declaration for the timer measurement FSM is given in figure [FIGURE]. Like the
edge counting section, we can see resources has been assigned for all the three-frequency

measurement sub-systems.

88

- MBASUre timer PeSOUMCeS === === - e e eeeememaae

TYPE state_measure_timer_type IS (wait_for_enable_measure, wait_for_ack_1, measure_timing, wait_for_ack_2);
--1st frequency timing measuring FSM

SIGNAL state measure_timer : state_measure_timer_type := wait_for_enable_measure;
--2nd frequency timing measuring FSM

SIGNAL state_measure_timer 2 : state_measure_timer_type := wait_for_enable_measure;
--3rd frequency timing measuring FSM

SIGNAL state_measure_timer 3 : state_measure_timer_type := wait_for_enable_measure;

--time counters-----—-=-ssr-eaas

----1st frequency----

SIGNAL time counter : INTEGER RANGE @ TO time counter max := 0;

----2nd frequency----

SIGNAL time_counter_2 : INTEGER RANGE @ TO time_counter_max := 0;

----3rd frequency----

SIGNAL time_counter_3 : INTEGER RANGE © TO time_counter_max := @;

--1st frequency data and sending flag

SIGNAL send_trigger : STD_LOGIC

1= '@

SIGNAL new_data : unsigned (15 DOWNTO @) := (OTHERS => '@');

--2nd frequency data and sending flag

SIGNAL send_trigger 2 : STD_LOGIC

= '@

SIGNAL new_data_2 : unsigned (15 DOWNTO @) := (OTHERS => '@');

--3rd frequency data and sending flag

SIGNAL send_trigger 3 : STD_LOGIC

=103

SIGNAL new_data_ 3 : unsigned (15 DOWNTO @) := (OTHERS => '@');

127.5. Handshake protocol between the state

machines

[FIGURE] presents the working principle of the hand-shake protocol for a single frequency
measurement. As discussed above, two clock domains have been fitted (yellow: the old clock,

green: the new clock) with a metastable region (the pink-red region).

Old clock New Clock
domain domain

Reqguest (1'b1)

ACK (1'b1)

Clear (1'b0)

lear (1'b0)

89

-- edge counter <-> measure Timer -—------omom oo
-~ Handshake protoCol resOUrCes - - - e e e e
--1st frequency--

SIGNAL enable_edge counter : STD_LOGIC := '@';

SIGNAL enable edge counter_ack : STD LOGIC := '®@';

SIGNAL df enable edge counter 1 : STD LOGIC := '@
SIGNAL df_enable_edge counter_2 : STD_LOGIC := '@';
SIGNAL df_enable_edge_counter_ack_1 : STD_LOGIC := '@';
SIGNAL df_enable edge counter_ack 2 : STD_LOGIC := '@

--2nd frequency--

SIGNAL enable edge counter_2 : STD _LOGIC := '@";

SIGNAL enable_edge_counter_ack_2 : STD_LOGIC := '@";
SIGNAL df_enable_edge counter_1 2 : STD_LOGIC := '®@';
SIGNAL df_enable_edge_counter_2 2 : STD_LOGIC := '@';
SIGNAL df enable edge counter ack 1 2 : STD_LOGIC := '@';
SIGNAL df_enable_edge counter_ack_2 2 : STD_LOGIC := '@';

--3rd frequency--
SIGNAL enable_edge_counter_3 : STD_LOGIC := '@';

SIGNAL enable edge counter_ack 3 : STD_LOGIC := '@';
SIGNAL df_enable edge counter 1 3 : STD LOGIC := '®@';
SIGNAL df_enable_edge_counter_2 3 : STD_LOGIC := '@';
SIGNAL df enable edge counter _ack 1 3 : STD_LOGIC := '@';
SIGNAL df_enable_edge counter_ack_2 3 : STD_LOGIC := '@';

The steps of the protocol are as follows:

Step-1: Initial request for data transfer is sent from the old clock to the new clock domain
passing the metastability region.

Step-2: The new clock receives the request and sends an ack signal back.

Step-3: The old clock receives the ack from previous step and finally clears the request signal
Step-4: The new clock sends an acknowledgement back when the data is cleared through its
block.

90

-- Functions for the implementation of the handshake protocol for 3rd frequency

-- Step-1: Initial request for data transfer is sent from the old clock to the new clock domain passing the metastability region.

-- Step-2: The new clock receives the request and sends an ack signal back.
-- Step-3: The old clock receives the ack from previous step and finally clears the request signal
-- Step-4: The new clock sends an acknowledgement back when the data is cleared through its block.

L_DF_ENABLE_EDGE_COUNTER_ACK_3 : PROCESS (clk, reset)
BEGIN
IF (reset = "1') THEN
df_enable_edge_counter_ack_1_3 <=
df_enable_edge_counter_ack_2_3 <=
ELSIF (rising_edge(clk)) THEN

[P

e
0

df_enable_edge_counter_ack_1_3 <= enable_edge_counter_ack_3;
df_enable_edge counter_ack 2 3 <= df_enable_edge counter_ack_1_3;

END IF;
END PROCESS;

L_DF_ENABLE_EDGE_COUNTER_3 : PROCESS (freq_in_3, reset)
BEGIN
IF (reset = "1') THEN
df_enable_edge_counter_1_3 <=
df_enable_edge_counter_2_3 <=
ELSIF (rising_edge(freq_in_3)) THEN
df_enable_edge_counter_1_3 <= enable_edge_counter_3;

e
‘0’

i
i

df_enable_edge counter_2_3 <= df_enable_edge_counter_1_3;

END IF;
END PROCESS;

-- Functions for the implementation of the handshake protocol for 2nd frequency

-- Step-1: Initial request for data transfer is sent from the old clock to the new clock domain passing the metastability region.

-- Step-2: The new clock receives the request and sends an ack signal back.
-- Step-3: The old clock receives the ack from previous step and finally clears the request signal
-- Step-4: The new clock sends an acknowledgement back when the data is cleared through its block.

L_DF_ENABLE_EDGE_COUNTER_ACK_2 : PROCESS (clk, reset)
BEGIN
IF (reset = '1') THEN
df_enable_edge_counter_ack_1_2 <=
df_enable_edge_counter_ack_2 2 <=
ELSIF (rising_edge(clk)) THEN

.-

]
2’

-

df_enable_edge_counter_ack_1_2 <= enable_edge_counter_ack_2;
df_enable_edge_counter_ack_2_2 <= df_enable_edge_counter_ack_1_2;

END IF;
END PROCESS;

L_DF_ENABLE_EDGE_COUNTER_2 : PROCESS (freq_in_2, reset)
BEGIN
IF (reset = '1') THEN
df_enable_edge_counter_1 2 <= '@’
df_enable_edge_counter_2_2 <= '@’
ELSIF (rising_edge(freq_in_2)) THEN
df_enable_edge_counter_1_2 <= enable_edge_counter 2;

df_enable_edge_counter_2_2 <= df_enable_edge_counter_1_2;

END IF;
END PROCESS;

91

y region.

5
= BLe
5

ew clock sen
L_DF_ENABLE_EDGE_COUNTER_ACK_3 :
BEGIN
IF {reset = '1") THEN
df_enable_edge counter_ack_1 3 <= '@';
df_enable_edge_counter_ack_2 3 <= '9';
ELSIF (rising_edge(clk)) THEN
df_enable_edge_counter_ack_1_3 <= enable_edge_counter_ack_3;
df_enable_edge_counter_ack_2_3 <= df_enable_edge_counter_ack_1_3;
END IF;
END PROCESS;

- Step-4: The

L_DF_ENABLE_EDGE_COUNTER_3 : PROCESS (freq_in_3, reset)
BEGIN
IF (reset = '1') THEN
df_enable_edge counter_1_3 <= '@';
df_enable_edge_counter_2_3 <= '@';
ELSIF (rising_edge(freq_in_3)) THEN
df_enable_edge counter_1_3 <= enable_edge_counter_3;
df_enable_edge counter_2_3 <= df_enable_edge counter_1_3;
END IF;
END PROCESS;

The major advantage of implementing this method is that the system will only start reading
when it is ready to receive, that means has the control over receiving data by not allowing to
post new requests unless the acknowledgement stages are cleared. Thus, the system will
always receive stable data for measurement. The following code defines the two stages of
double-flopping of the hand-shake signals for all the three subsystems of frequency
measurements [FIGURE] to [FIGURE]. As we can, proper synchronization and stability between
the edge counter and time measuring state machines can be implemented.

137.6. Edge Counting Process

The codes for edge counting for the three frequency subsystems are given below in [FIGURE].
As mentioned earlier, the state machine for edge counting consists of two states:
wait_for_start_measure and counting. The first state defines the wait case of a subsystem to
start the frequency measurement, while the second state defines the state of counting. Each of
the frequencies are measured based on the amount of rising edges in the specified time
window:

no of rising edges

signalsrequency = time window

The counting operation for the edge counter only works when it is enabled via the time state
machine via the hand-shaking protocol. As we can see in the code, counter enable ack is
activated, and after receiving a return acknowledgement to clear the request, the counting
process starts and continues until the counter reaches the maximum threshold value 12500.

92

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

--1st frequency input--

-- FSM for edge counter for 1st frequency

-- Wait for_start measure: Waiting for counting flag to be triggered

-- Counting: Main edge counting stage, checks ack bit at the same time.

-- If ack is not received, then the edge counter returns to ‘wait_for_start _measure’ stage

L_EDGE_COUNTER : PROCESS (freq_in, reset)
BEGIN
IF (reset = '1') THEN
state_edge_counter <= wait_for_start_measure;
edge_counter <= 0;
enable_edge_counter_ack <= '@';
ELSIF (rising_edge(freq_in)) THEN
CASE state edge counter IS
WHEN wait_for_ start_measure =>
IF (df_enable_edge counter_2 = '1') THEN
edge_counter <= 9;
enable_edge_counter_ack <= '1";
state_edge_counter <= counting;
ELSE
state_edge_counter <= wait_for_start_measure;
END IF;

WHEN counting => IF (df_enable_edge_counter_2 = '©") THEN
enable_edge_counter_ack <= '0’;
state_edge_counter <= wait_for_start_measure;
ELSE
IF (edge_counter < edge_counter_max) THEN
edge_counter <= edge_counter + 1;

END IF;
state_edge_counter <= counting;
END IF;
WHEN OTHERS => state_edge_counter <= wait_for_start_measure;
END CASE;

END IF;
END PROCESS;

93

323
324
325
326
327
328
329
33e
331
332
333
334
335
336
337
338

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

--2nd frequency input--

-- FsMm for edge counter for 2nd frequency

-- Wait_for_start_measure: Waiting for counting flag to be triggered

-- Counting: Main edge counting stage, checks ack bit at the same time.

-- If ack is not received, then the edge counter returns to ‘wait_for_start_measure’ stagd

L_EDGE_COUNTER_2 : PROCESS (freq_in_2, reset)
BEGIN
IF (reset = "1") THEN
state_edge counter_2 <= wait_for_start_measure;
edge _counter_2 <= 0;
enable edge counter_ack 2 <= '0';
ELSIF (rising_edge(freq_in_2)) THEN
CASE state_edge counter_2 IS
WHEN wait_for_start_measure =>
IF (df_enable_edge counter_2 2 = "1') THEN
edge_counter_2 <= 0;
enable_edge counter_ack_2 <= '1';
state_edge counter_2 <= counting;
ELSE
state_edge_counter_2 <= wait_for_start_measure;
END IF;

WHEN counting =>

IF (df_enable_edge counter_2 2 = '@') THEN

enable_edge counter_ack 2 <= '0';

state_edge_counter_2 <= wait_for_start_measure;
ELSE

IF (edge_counter_2 < edge_counter_max) THEN

edge _counter_2 <= edge _counter_2 + 1;

END IF;
state_edge_counter_2 <= counting;
END IF;
WHEN OTHERS => state_edge counter_2 <= wait_for_start_measure;
END CASE;

END IF;
END PROCESS;

94

464 --3rd frequency input--

465 ; - .
466 -- FSM for edge counter for 3rd frequency

a67 -- Wait_for_start_measure: Waiting for counting flag to be triggered
468 - Counting: Main edge counting stage, checks ack bit at the same time.
469 -- If ack is not received, then the edge counter returns to ‘wait for start_measure’ stage
470 L_EDGE_COUNTER_3 : PROCESS (freq_in_ 3, reset)

471 BEGIN

472 IF (reset = "1') THEN

473 state_edge counter 3 <= wait_for_start_measure;

474 edge_counter_3 <= 0;

475 enable_edge counter_ack 3 <= '0';

476 ELSIF (rising_edge(freq_in_3)) THEN

a77 CASE state_edge_counter_3 IS

478 WHEN wait_for_start_measure =>

479 IF (df_enable edge counter 2 3 = "1') THEN

480 edge_counter_3 <= 0;

481 enable_edge counter_ack 3 <= '1°;

482 state_edge counter_3 <= counting;

483 ELSE

484 state_edge counter_3 <= wait_for_start_measure;
485 END IF;

486

487 WHEN counting => IF (df_enable edge counter 2 = '8') THEN
488 enable_edge_counter_ack_3 <= 'e’;

489 state_edge_counter_3 <= wait_for_start_measure;

490 ELSE

491 IF (edge_counter_3 < edge_counter_max) THEN

492 edge counter_3 <= edge _counter_3 + 1;

493 END IF;

494 state_edge _counter_3 <= counting;

495 END IF;

496 WHEN OTHERS => state_edge counter_3 <= wait_for_start_measure;
497 END CASE;

498 END IF;

499 END PROCESS;

147.7. Time measurement process

The codes for time measurement for the three frequency subsystems are given below in
[FIGURE]. As mentioned earlier, the state machine for edge counting consists of four states:
Wait_for_enable_measure, Wait_for_ack 1, Measure_timing and Wait_for_ack_2. The major
task of this state machine is to control the edge counting process by enabling the edge counting
and at the same time track the timing of that window, defined as 60000. Another important task
of this state machine is that when the edge counting process stops, then send_trigger is
activated [LINE], which enables the transmitter of the UART to initiate the transmission of the
counter data (L_Transmitter, will be discussed later).

95

258
259
260
261
262
263
264
265
266
267
268
269
27e
271
272
273
274
275
276
277
278
279
28e
281
282
283
284
285
286
287
288
289
299
291
292
293
204
295
296

298
299
309
301
392
3e3
304
385
3e6
3e7

L_MEASURE_TIMER : PR
BEGIN
IF (reset = '1°)

OCESS (clk, reset)

THEN

state_measure_timer <= wait_for_enable_measure;

enable_edge_t

send_trigger

counter <= "@';
<= '0';

time_counter <= @;

new_data <=

(OTHERS => '@');

ELSIF (rising_edge(clk)) THEN
CASE state_measure_timer IS

WHEN wai

ELSE

ERD

t_for_enable_measure => send_trigger <= '@'; IF (enable_measure = '1') THEN
enable_edge_counter <= '1';
state_measure_timer <= wait_for_ack_1;

state_measure_timer <= wait_for_enable_measure;
IF;

WHEN wait_for_ack_1 => IF (df_enable_edge_counter_ack_2 = "1') THEN state_measure_timer <= measure_timing;

ELSE

END

state_measura_timer <= wait_for_ack_1;
IF;

HHEN measure_timing => IF (time_counter = time_counter_max) THEN time_counter <= @;

ELSE

END

WHEN wait_for_ack_2 => counter_ended <= '@'; IF (df_enable_edge_counter_ack_2 = '@') THEN

ELSE

END

enable_edge_counter <= '@';
state_measure_timer <= wait_for_ack_2;
counter_ended <= '1';

time_counter <= time_counter + 1;
state_measure_timer <= measure_timing;
counter_ended <= '@";

IF;

send_trigger <= 'l'; -------ceeeecemeeeeeaaas
IF (fall_adl_detected = "99") THEN
new_data <= (OTHERS => '@');
ELSIF (fall_adl_detected = "@1") THEN
new_data <= (OTHERS => '9@');
ELSE
new_data <= (OTHERS => '1');
END IF;
state_measure_timer <= wait_for_enable_measure;

state_measure_timer <= wait_for_ack_2;
IF;

WHEN OTHERS =>
state_measure_timer <= wait_for_enable_measure;

END CASE;
END IF;
END PROCESS;

96

383
iga
385
386
387
388
389
350
391
392
393
394
395
396
397
398
399

401
282
283

485

407
488

418
411
412
413
414
415
415
417
418
412
aie
421

423
az4
425
426
a27
428
429
438
431

L_MEASURE_TIMER_2 : PROCESS (clk, reset)
BEGIN
IF (reset = '1') THEN
state_measure_timer_2 <= wait_for_enable_smeasure;
enabls_edge_counter_2 <= ‘8°;
send_trigger_2 <= "@';
time_counter_2 <= &;
new_data_2 <= (OTHERS => '8');
ELSIF (rising_edge(clk)) THEN
CASE state_measure_timer_2 IS

WHEN wait_for_enable_measure =3 send_trigger_2 <= '@';
IF (enable measure_2 = '1') THEN enable_edge_counter_2 <= ‘1';
state_measure_timer_2 <= walt_for_ack_1;
ELSE
state_measure_timer_2 <= wait_for_enable_measure;
END IF;
WHEN wait_for_sck_1 => IF (df_enable_edge_counter_sck_2 2 = "1' } THEN stete_measure_timer_2 <= measure_timing;
ELSE
state_seasure_timer_2 <= wait_for_ack_1;
END IF;

WHEN measure_timing => IF (time_counter_2 = time_counter_max) THEN time_counter_2 <= 8;

enable_edge_counter_2 <= ‘8';
state_measure_timer_2 <= wait_for_ack_2;
counter_ended_2 <= '1';

ELSE
time_counter_2 <= time_counter_2 + 1;
state_measure_timer_2 <= measure_timing;
counter_ended 2 <= "3';

END IF;

WHEN wait_for_ack_2 => counter_ended_2 <= "@'; IF (df_enable_edge_counter_ack_2_2 = "@') THEN send_trigger_2 <= '1';
IF (fall_adl_detected = "0@") THEN
new_data_2 <= (OTHERS => '@');
ELSIF (fall_adl_detected = “B1°) THEN
new_data_2 <= (OTHERS => '@');
ELSE
new_data_2 <= (OTHERS => '1');
END IF;
state_measure_timer_2 <= wait_for_enable_measure;

ELSE
state_measure_timer_2 <= wait_for_ack_2;
END IF;
WHEN OTHERS =>
state_measure_timer_2 <= wait_for_enable_measure;
END CASE;
END IF;
END PROCESS;

97

51@
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
538
531
532
533

535
536
537
538
539
548
541
542
543

EEEEE

549

551
552
553
554
555
556
557
558
559
560

L_MEASURE_TIMER_3 : PROCESS (clk, reset)
BEGIN
IF (reset = "1') THEN
state_measure_timer_3 <= wait_for_enable_measure;
enable_edge_counter_3 <= ‘@";

send_trigger_3 ¢«= '8';
time_counter_3 <= @;
new_data_3 <= (OTHERS => '@');
ELSIF (rising_edge(clk)) THEN
CASE state_measure_timer_3 IS
WHEN wait_for_enable_measure => send_trigger_3 <= '@'; IF (enable_measure_3 = '1') THENW
enable_edge_counter_3 <= '1";
state_measurs_timer_3 <= wait_for_ack_1;
ELSE
state_measure_timer_3 <= wait_for_enable_measure;
END IF;

WHEN wait_for_ack_1 => IF (df_enable_edge_counter_ack_2_3 = ‘1") THEN
state_measure_timer_3 <= measure_timing;
ELSE
state_measure_timer_3 <= wait_for_sck_1;
END IF;
WHEN measure_timing => IF (time_counter_3 = time_counter_max) THEM
time_counter_3 <= @;
enable_edge_counter_3 <= '@°;
state_measure_timer_3 <= wait_for_ack_2;
counter_ended_3 <= '1°;
ELSE
time_counter_3 <= time_counter + 1;
state_measure_timer_3 <= measure_timing;
counter_ended_3 <= ‘2°;
END IF;
WHEN wait_for_ack_2 =>
counter_ended_3 <= "@°;
IF (d¥_enable_edge_counter_ack_2_3 = ‘@') THEN send_trigger_3 <= '1'; IF (fall_adl_detected = “00") THEN
new_data_3 <= (OTHERS => '@');
ELSIF (fall_adl_detected = "@1") THEN
new_data_3 <= {OTHERS => '@');
ELSE
new_data_3 <= (OTHERS => '1'});
END IF;
state_measure_timer_3 <= wait_for_enable_measure;

ELSE
state_measure_timer_3 <= weit_for_ack_2;
END IF;
WHEN OTHERS =>
state_measure_timer_3 <= wait_for_enable_measure;
END CASE;
END IF;
END PROCESS;

98

157.7. System Architecture
15.17.7.1 Block diagram

False
— data
Wait until data Check We:\ed
received from UART parity r d in the 61"

\\// receiver

T if x"62"

Threshold clock cyde!
definition |
___ e
s v v . E
i Infialzetimewindow | | _intializetimewindow | | _ initialize time window |
' counter ol ’_’ counter oo ’_’ counter '
E | - | P Ll 5
i/ Count the no. of i 1 /Countthe no. of P 'Counttheno.of | |
i/ rising edges from i+ |/ rising edges from ¢ / rising edges from :
: VCO output ' ' VCO output ' H VCO output :
N - e :
N Frequency 1 \ ‘ Frequency2 | H Frequency 3 i
bessrnsnsssssssssssrssasssns a4 L e e L 4 bCessccscscsacsscscsssessssanaase 4
y
Calculate the RMS of the |
counters
False D
Restart measurement Send a packet

_m_mwm>_|—>;xmw with to
in the time window el

/ | trigger no fall event |
l True

Increment the time
window counter

True time window counter > 0 and Faise
<threshold_windows

[FIGURE BLOCK DIAGRAM SHOULD BE IMPLEMENTED IN THIS SECTION TOMORROW]

15.27.7.2 Working Principle

The algorithm for the three-channel frequency measuring and interrupt generation based on
fall/non-fall event is shown in [FIGURE]. Data stream is initially received through UART to
activate or deactivate the frequency monitoring and the sub-block for interrupt generation. A
parity bit which was sent with the data for error checking is checked at first, and if the underlying
error checking definition returns true, then the data packets are checked. Two-bit packet flags
determine whether the measurement process should start or not:
e X"61”: the frequency monitoring for the three-channels and interrupt sub-blocks are
triggered to start working.
e X’62”: No action will go on; measurement will stop and UART will wait for the other
packets on the Rx channel.
The three-frequency measuring sub-blocks perform similar operations. The definition for
thresholds is assigned as a common resource for all them. The defined number of clock cycles
for threshold frequency was set as 10 MHz, corresponding to the max. acceleration derived in
section 5.9.
When the frequency measuring block starts, a time window of 0.5 ms is created, and the rising
edges from the three incoming signals from the three VCOs are counted using three separate
counters. The counting process continues until the end of the window.
The following operations occur after the edge counting and timing measurement.

¢ The RMS value of the three edge counters is calculated, and this rms_edge_counter is
compared with our defined threshold.

o |If the rms_edge_counter is equal or higher than the threhsold, then the time_window
counter is incremented by 1, a packet of X”0000” with parity bit is sent to not trigger any
fall alarm. The system returns to the three-frequency measuring state.

¢ |f the time window counter is greater than 0, but less than threshold_windows, then
fall_adl_detected signal becomes “10”, which is the corresponding code for ADL of our
system.

¢ |f the time window counter equals to threshold_windows (which is 5 in this case, i.e.
11.82 ms), and the rms_edge_counter is less than or equal to the threshold counter, a
fall event is confirmed, and a trigger is sent to activate the alarm by sending a packet of
X’FFFF”.

100

167.8. RTL Model Complementation

16.1 7.8.1. Interrupt generation

The resources and the VHDL processes for the time window counter and interrupt generation are
shown in figure [FIGURE] and [FIGURE]. As mentioned before, the rising edges of the three
incoming signals from three VCOs are counted using three separate counters in 0.5 ms time
windows. The three counting processes work concurrently, and the frequency is measured until
the end of the window.

ENTITY FMEAS_UART_ANZEN 1S
GENERIC (

maximum frequency in our case

= Maximum \
def.: 591

edge_counter_max :

the maxir
283688:
time_counter_max :

= XF ou ha L)
baud_pulses : INTEGER :=
-~ --we trigger if the fre
triggering_level : INTEGER :=
- trigger if the value within the range is found for 5 time windows
time_windows : INTEGER := 5);
PORT (
clk : IN STD_LOGIC;
reset : IN STD_LOGIC;
24 freq_in,freq_in 2,freq in_3 : IN STD_LOGIC; --3 frequency inputs from 3 VC0Os
2t rx : IN STD_LOGIC;
2 tx : OUT STD_LOGIC);
27 END FMEAS_UART_ANZEN;
15 - time window and InNTerrupt Beneration PEEOUrCES oo s o e o e
4 SIGNAL counter_ended,counter_ended 2,counter_ended 3 : STD_LOGIC : tatus flags for three
SIGNAL time_window_counter : INTEGER RANGE @ TO time_windows : of the current coun windows

SIGNAL fall_adl detected : STD_LOGIC_VECTOR (1 DOWNTO @) := “88";
149 CONSTANT threshold_frequency : INTEGER := triggering level;
15@ I SIGNAL RMS_EDGE_COUNTER : INTEGER :=@;

t fall, 11: fall

Figure 26 the upper two makes one figurer

The discussions regarding the explanation of the code given below have been mentioned in the
previous section. In addition to that we can see when a fall event is not triggered, a packet of
X"0000” is sent through UART, and the time window counter gets reset. The triggering action is
considered for both the time counter and low input frequency cases.

101

681
602

608

618
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
6528
629
639
631
632
633

VARIABLE temp_a : unsigned(31 downto @) :="80208080
VARIABLE temp_b : unsigned(15 downto @) :=(others =>
VARIABLE temp_c : INTEGER :=0;
BEGIN
IF (reset = '1') THEN
time_window_counter <= 2;
fall_adl_detected <= "@@";
RMS_EDGE_COUNTER <=8;
ELSIF (rising_edge(clk)) THEN

IF (counter_ended = '1l' and counter_ended 2 = '1' and counter_ended_3 = '1') THEN
temp_c := (edge_counter*edge_counter)+(edge_counter_2*edge_counter_2)+(edge_counter_3*edge_counter_3);

temp_a := to_unsigned(temp_c,temp_a'length);
temp_b := sqrt (temp_a);
RMS_EDGE_COUNTER <= to_integer(temp_b);

IF (RMS_EDGE_COUNTER >= triggering_level) THEN ----- dont trigger
time_window_counter <= @;
fall_adl_detected <= "8@";

--58

ELSIF (time_window_counter < time_windows) THEN ---- it is less than 1@ MHz, initiate the the time window counter

time_window_counter <= time_window_counter + 1;

IF (time_window_counter < (time_windows - 1)) THEN
fall_adl_detected <= "@1"; -- some kind of ADL
ELSIF (time_window_counter = (time_windows - 1)) THEN

fall_adl detected <= "11";

END IF;
ELSE
time_window_counter <= time_window_counter;
fall_adl _detected <= "11";
END IF;
ELSE
time_window_counter <= time_window_counter;
END IF;
ELSE
time_window_counter <= time_window_counter;
END IF;
END PROCESS;

Figure 27 the main thing. add a good caption

102

function sqrt (d :
variable a :
variable g
variable left,right,r :
56 variable i :

58 begin
59 for 1 in @ to 15 loop
50 right(@):="1";
61 right(1l):=r(17);
2 right(17 downto 2):=q;

unsigned(31

integer:=0;

UNSIGMNED) return UNSIGNED is
downto @):=d;

original input.

: unsigned(15 downto @):=(others => '@"); --result.
unsigned(17 downto @):=(others => '8');

--input to adder/sub.r-remainder.

left(17 downto 2):=r(15 downto @);

if (r(17) = '1°) then
67 r = left + right;
168 else
69 r := left - right;
7 end if;
72 q(@) := not r(17);
7 end loop;

4 return q;
5

end sqrt;

1

1

1

1

1

1

1

1

1

1

1
162
163 left(1l downto @):=a(31 downto 3@);
1A
1

1

1

1

1

1

1

1

1

1

1

1

65 a(31 downto 2):=a(29 downto @); --shifting by 2 bit.

71 gq(15 downto 1) := g{14 downto @);

Figure 28 to generate square root [citation required, can you find Pallavi citations for square root gen in vhdl plz]

16.2

7.8.2. UART transmitter

The transmitter FSM has six states. The details of the transmission is given below in Table
[TABLE]. The code for the UART transmitter is given in Figure [FIGURE].

States

Description

wait_for_send_trigger

Waits until the next send request is received. There are
three send triggers for the three frequencies, which
becomes ‘1’ by the end of the corresponding time windows
of the three inputs. If a fall is detected (true event) for the
time window threshold (5 in our case), then X"FFFF” packet
is transmitted, else X”0000” is sent at the end of each of the
time windows.

send_start_bit

Checks if the tx_counter is equal to the baud pulse rate of
the system. If true, then start sending the data packets, and
restart the tx_counter. Else, increment the tx_counter until
it becomes equal to the baud pulse rate.

send_packets

The first start bit is sent to the processor to inform the data
incoming. The first packet of X"FF” is transmitted.

set_bit_counter

The bit counter transmits the 8-bits via through its
definition as a STD_LOGIC_VECTOR. The parity bit state
comes next when the first packet is transmitted.

send_parity bit

Parity bit is generated using the XOR gate and sent.

send stop bits

Stop bit is transmitted indicating the end of transmission

103

b42
643

645
646
047

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
67
671
672
673
674
675
676
677
678
679
689
681
682
683
684
685
686

L_TRANSMITTER : PROCESS (clk, reset)
BEGIN
IF (reset = "1°) THEN
state_transmitter <= wait_for_send_trigger;
packet_@ <= (OTHERS => '@');
packet_1 <= (OTHERS => '@');
tx_counter <= @;
bit_counter <= @;
packet_counter <= @;
> ¢= 1"}
ELSIF (rising_edge(clk)) THEN
CASE state_transmitter IS
WHEN wait_for_send_trigger =>
IF (send_trigger = '1') THEN --1st frequency send trigger checking and transmission initiation
packet_@ <= STD_LOGIC_VECTOR(new_data(7 DOWNTO 8));
packet_1 <= STD_LOGIC_VECTOR(new_data(15 DOWNTO 8));
state_transmitter <= send_start_bit;
ELSIF (send_trigger 2 = '1') THEN --2nd frequency send trigger checking and transmission initiation
packet_@ <= STD_LOGIC_VECTOR(new_data_2(7 DOWNTO @));
packet_1 <= STD_LOGIC_VECTOR(new_data_2(15 DOWNTO 8));
state_transmitter <= send_start_bit;
ELSIF (send_trigger_3 = ‘1') THEN --3rd frequency send trigger checking and transmission initiation
packet_8 <= STD_LOGIC_VECTOR(new_data_3(7 DOWNTO 8));
packet_1 <= STD_LOGIC_VECTOR(new_data_3(15 DOWNTO 8));
state_transmitter <= send_start_bit;
ELSE
state_transmitter <= wait_for_send_trigger;
END IF;

WHEN send_start_bit =» tx <= '@°;
IF (tx_counter = baud_pulses) THEN
tx_counter <= @;
state_transmitter <= send_packets;
ELSE
tx_counter <= tx_counter + 1;
state_transmitter <= send_start_bit;
END IF;
WHEN send_packets => state_transmitter <= send_packets;

IF (packet_counter = @) THEN
tx <= packet_@(bit_counter);
ELSIF (packet_counter = 1) THEN

104

686
687
688
689
690
691
692
693
694
695
696
697
698
699
7ee
7e1
782
7e3
704
785
706
787
7es8
7@9
710
711
712
713
714
715
716
717
718
719
T80
720
721
722
723
724
725
726
727
728
729
730

732
733
734
735

ELSIF (packet_counter = 1) THEN
tx <= packet_l(bit_counter);
END IF;

IF (tx_counter = baud_pulses) THEN
tx_counter <= @;
state_transmitter <= set_bit_counter;
ELSE
tx_counter <= tx_counter + 1;
END IF;

WHEN set_bit_counter => IF (bit_counter = 7) THEN

bit_counter <= @;

state_transmitter <= send_parity bit;
ELSE

bit_counter <= bit_counter + 1;

state_transmitter <= send_packets;
END IF;
WHEN send_parity bit => tx <= ((packet_1(7) XOR packet_l1 (6)) XOR (packet_1(5) XOR packet_1 (4)))
XOR ((packet_1(3) XOR packet_1 (2)) XOR (packet_1(1) XOR packet_1 (@)))
XOR ((packet_@(7) XOR packet_@ (6)) XOR (packet_@(5) XOR packet_8(4)))
XOR ((packet_B(3) XOR packet_0(2)) XOR (packet_8(1) XOR packet_8(9)));

IF (tx_counter = baud_pulses) THEN
tx_counter <= 8;
state_transmitter <= send_stop_bits;

ELSE
tx_counter <= tx_counter + 1;
state_transmitter <= send_parity_bit;

END IF;

WHEN send_stop_bits => tx <= '1°;

IF (tx_counter = 2 * baud_pulses) THEN

- IF (tx_counter = 4 * baud pulses) THEN

tx_counter <= @;

IF (packet_counter = 1) THEN
packet_counter <= @;
state_transmitter <= wait_for_send_trigger;
ELSE
packet_counter <= packet_counter + 1;
state_transmitter <= send_start_bit;
END IF;

ELSE
tx_counter <= tx_counter + 1;
END IF;
| WHEN OTHERS => state_transmitter <= wait_for_send_trigger;
END CASE;
END IF;
END PROCESS;

16.37.8.3. UART receiver

The UART receiver receives signal the Rx line of the UART. The receiver FSM consists of
seven states. The description of the operation of the receiver FSM is given below in Table
[TABLE]. The code for the receiver module is given in Figure [FIGURE].

105

States

Description

wait_for_start_bit

If negative edge rx flag is enabled, then start
bit delay state. Else, wait until the flag turns
‘0.

start_bit_delay

Wait for 1.5 bauds before sampling. No
autobaud rate capability, communication

is expected at 38400 baud pulse. If rx_counter
reaches 1.5 bauds, then start sampling, else
increment the counter and retain the state.

sample_bit

Store the RX values in the "received_data"
buffer, the indexing is controlled using the
rx_bit_counter. If the rx_bit_counter is not 7,
then increment the counter and go to the
delay_bit state. This corresponds to the delay
bit in the received data. Else if rx_counter is 7,
then all the bits have been received, the
system moves on to check the parity.

delay_bit

Increment the rx_counter until it is equal to
the baud_pulse, and return to the sample_bit
state.

wait_for_parity_bit

Receive the parity bit if rx_counter matches
the baud pulses, else wait until parity bit is
received.

delay_stop_bits

Increment the rx_counter until it is equal to
twice the baud_pulses in order to start
decoding, else increment rx_counter and
retain the state.

decode_received_data

The parity is checked at the beginning of the
state for any error, if found then the system
returns to the first state. Else the
received_data is checked whether it is and
enable type or disable type. If enable, then it
enables all the enable measure triggers for
the three frequencies. If disable, then it does
the disable operation.

106

742
743
744
745
746
747
748
749
758
751
752

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

~-RX shift register-—--ccm oo e e

-- Used to store the current and previous RX states.

-- the presence of a falling edge in the RX input

INPUT_SHREGS : PROCESS (clk, reset)
BEGIN

IF (reset = "1') THEN
sh_rx <= "11";

ELSIF (rising_edge(clk)) THEN
sh_rx(1) <= sh_rx(@);
sh_rx(0) <= rx;

END IF;

END PROCESS;

--Falling edge detection of RX Input - oo s
-- The presence of a falling edge is used as an indicator that data is incoming

RX_EDGE_DETECTION : PROCESS (clk, reset)
BEGIN
IF (reset = "1') THEN
rx_d <= '1’;
ELSIF (rising_edge(clk)) THEN
rx_d <= sh_rx(1);
END IF;
END PROCESS;

negedge_rx <= (NOT sh_rx(1)) AND rx_d;

107

774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
8e1
802
803
8e4
8es
8ee
8e7
8es
809
810
811
812
813
814
815
816

L_RECEIVER : PROCESS (clk, reset)

BEGIN
IF (reset =
state_re
rx_count
bit_coun

‘1') THEN

ceiver <= wait_for_start_bit;
er <= @;

ter_rx <= 0;

received_data <= (OTHERS => '9');
enable_measure <= '@’;
enable_measure_2 <= '0’;
enable_measure_3 <= '@’;

ELSIF (rising_edge(clk)) THEN
CASE state_receiver IS
WHEN wait_for_start_bit =>

IF (
ELSE
END
WHEN sta

IF (
—F

ELSE

END

WHEN sample_bit => received_data(bit_counter_rx) <= rx_d;

IF (

ELSE

END
WHEN del
IF (

ELSE

negedge_rx = '1') THEN
state_receiver <= start_bit_delay;

state_receiver <= wait_for_start_bit;
IF;

rt_bit_delay =>

rx_counter = (3 * baud_pulses)/2) THEN
F (rx_counter = (4 * baud_pulses)) THEN
rx_counter <= @;

state_receiver <= sample_bit;

rx_counter <= rx_counter + 1;
state_receiver <= start_bit_delay;
IF;

bit_counter_rx = 7) THEN
bit_counter_rx <= @;
state_receiver <= wait_for_parity_bit;

bit_counter_rx <= bit_counter_rx + 1;
state_receiver <= delay_bit;

IF;

ay_bit =>

rx_counter = baud_pulses) THEN
rx_counter <= 9;

state_receiver <= sample_bit;

rx_counter <= rx_counter + 1;
state_receiver <= delay_bit;

108

END IF;
WHEN wait_for_parity_bit =>

IF (rx_counter = baud_pulses) THEN
rx_counter <= @;
parity_bit_checker <= rx_d;
state_receiver <= delay_stop_bits;

ELSE
rx_counter <= rx_counter + 1;
state_receiver <= wait_for_parity_bit;

END IF;

WHEN delay_stop_bits =>

829 IF (rx_counter = 2 * baud_pulses) THEN

83e - IF (rx_counter = 4 * baud_pulses) THEN

83 rx_counter <= 2;

83 state_receiver <= decode_received_data;

83 ELSE

834 rx_counter <= rx_counter + 1;

8 state_receiver <= delay_stop_bits;

836 END IF;

837

838 WHEN decode_received_data =>

835 IF ((((received_data(7)X0R received_data(6)) XOR (received_data(5)XOR received_data(4)))
840 XOR ((received_data(3)XOR received_data(2))

341 km (received_data(1)XOR received_data(@)))) /= parity_bit_checker) THEN
842 state_receiver <= wait_for_start_bit;

843 ELSE

344 CASE received_data IS
4 WHEN ctrl_enable_measure =>

WHEN ctrl_disable_measure =>

8 enable_measure <= '@'; enable_measure_2 <= '8'; enable_measure_3 <=
849 WHEN OTHERS => state_receiver <= wait_for_start_bit;

850 END CASE;

851 END IF;

852 state_receiver <= wait_for_start_bit;

853 WHEN OTHERS => state_receiver <= wait_for_start_bit;

854 END CASE;

855 END IF;

856 END PROCESS;
857 END RTL_FMEAS_UART_ANZEN;

177.9. Functional model simulation

enable_measure <= 'l"; enable_measure_2 <= '1°'; enable_measure_3 <=

1

9]

A testbench was programmed for our VHDL code and was verified. This section discusses the
testbench setup, parameter choices and the corresponding simulations performed via

ModelSim.

17.1 7.9.1. Test bench

The DUT model was instantiated inside the testbench using the following declarations of the

architecture RTL_FMEAS_UART_ANZEN (Figure [FIGURE]).

109

7 architecture RTL_FMEAS_UART_ANZEN of testbench is

8

9 constant clock_cycle: time := 8.333 ns; -~ 120 MHz

10 signal freq_in_cycle: time := 66.67 ns; -- 15 MHz
11 signal freq_in_cycle_2: time := 83.33 ns; -~ 12 MHz
12 signal freg_in_cycle_3: time := 52.63 ns; -~ 19 MHz
13

14 signal clk: std_logic := '@’°;

15 signal reset: std_logic := "1°;

16 signal freq_in: std_logic := '9’;

17 signal freq_in_2: std_logic := '@°;

18 signal freq_in_3: std_logic := '@';

19 signal tx: std_logic;

20 signal rx: std_logic := "1°;

21

22 constant ¢_BIT_PERIOD : time := 26041.66667 ns; --defined by our baud rate; 1/38400 bps = 26841.66667 ns
23 constant twice_c_BIT_PERIOD : time := 520883.33334 ns;

The DUT was also tested for different random frequencies for the 3 frequency inputs. The
choice of the random stimuli was made to analyze the behavior of the system. Figure [FIGURE]
shows the frequency stimuli process. Among the 6, 2 of the cases corresponds to possible fall
cases.

L_FREQ_IN_CYCLE: process
begin
walt for 230 ns;
reset <= '@';
wait for 12 ms;

freq in_cycle <= 77 ns; freq in cycle 2 <= 57 ns; freq in cycle 3 <= 8% ns; -- freq 1=12.98 Mhz; Freq_2=17.54 Mhz; freq_3=11.26 Mhz
wait for 5 ms;

freg_in_cycle «= 62 ns; freq_in_cycle 2 <= 74 ns; freg_in_cycle 3 <= 55 ns; -- fregq_1=15.38 Mhz; freq_2=13.51 Mhz; freg_3=18.18 Mhz
walt for 5 ms;

freq_in_cycle <= 692 ns; freq in cycle 2 <= 178 ns; freq_in _cycle 3 <= 348 ns; POSSIBLE FALL CASE. freq 1=18.87 Mhz; freq 2=5.61 Mhz; freq 3=2.94 Mhz
wait for 5 ms;

freq in_cycle <= 42 ns; freg in_cycle 2 <= 51 ns; freg_in_cycle 3 <= 75 ns; freq 1=23.81 Mhz; freq 2=19.6@ Mhz; freq 3=13.33 Mhz

wait for 5 ms;

freq_in_cycle <= B1 ns; freq_in_cycle_2 <= 245 ns; freq_in_cycle_3 <= &7 ns; -- freq _1-12.35 Mhz; freq_2-4.981 Mhz; fr

walt for 5 ms;

freq_in_cycle <= 123 ns; freq in_cycle 2 <= 167 ns; freq in_cycle 3 <= 244 ns;
wait;
end process;

Figure[FIGURE] shows the receiver process of the UART receiver. According to our defined
system, X’61” corresponded to the start reading operation, while X"62” corresponded to the stop
operation. The bit transmission delays testing were performed based on the baud rate of the
system, i.e. 38400. This bit period was calculated from the following equation:

1
CBITpgrioD = 38400

Along with the start measuring and stop measuring packets, we can also see the parity bit was
added. Concurrently, the code for the generation of clock and input frequency is shown in
Figure [FIGURE].

110

54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
9%
92
93

94
ag

--PROGRAMMING AND MEASUREMENT CONTROL-----===-=========s===cecmm=ecmmmmmmemmns

-- Programming and measurement initialization expected time: ~1.25 ms

-- Frequency measurement (4 windows): ~4*@.5 ms = 2 ms
-- Disable measurement expected time: ~@.3125 ms
L_RX: process
begin
wait for 2.5 ms;

-- start measure frame (@x61) --
rx <= '9’'; -- start bit
wait for c_BIT_PERIOD;

rx <= *1°;
wait for c_BIT_PERIOD;

rx <= '0';
wait for c_BIT_PERIOD;

rx <= '0';
wait for c_BIT_PERIOD;

rx <= '@';
wait for c_BIT_PERIOD;

rx <= '8';
wait for c_BIT_PERIOD;

rx <= '1";
wait for c_BIT_PERIOD;

rx <= '1';
wait for c_BIT_PERIOD,

rx <= '0';
wait for ¢_BIT_PERIOD,

rx <= '1";
wait for c_BIT_PERIOD,;

rx <= '1"; -- parity
wait for twice_c_BIT_PERIOD;

bit @

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

bit 7

stop bit

111

97

98

99
1ee
101
102
163
104
105
106
167
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

220
221
222
223
224
225
226
227
228
229
230

-- stop measure frame (@x62) --
rx <= '9"; -- start bit
wait for c_BIT_PERIOD;

X 9"
wait for c_BIT_PERIOD;

Pxogm "1'3
wait for c_BIT_PERIOD;

o, 0L T -
wait for c_BIT_PERIOD;

rx: <= '9°';
wait for c_BIT_PERIOD;

rx <= '@';
wait for c_BIT_PERIOD;

rx <= '1";
wait for c_BIT_PERIOD;

rx <= '1";
wait for c_BIT_PERIOD;

rx <= '0';
wait for c_BIT_PERIOD;

rx <= "'1";
wait for c_BIT_PERIOD;

P o= 1% -- parity
wait for twice_c_BIT_PERIOD;

L_CLOCK: process

begin
wait for clock_cycle/2;
clk <= not clk;

end process;

L_FREQ _IN: process
begin

wait for freq_in_cycle/2;

freq_in <= not freq_in; fregq_in_2 <= not freq_in_2;
end process;

-- bit

-- bit

-- bit

-- bit

-- bit

-=- bit

-- bit

-- bit

-- stop bit

freg_in_3 <= not freq_in_3;

112

17.2 7.9.3. Testbench Simulation results

17.2.1 7.3.2.1 Generating interrupts

The DUT in the testbench was tested and the results were observed in the waveform generator
of ModelSim. [FIGURE] to [FIGURE] shows the process of characterizing an ADL event and a
fall event. A fall is detected when the three input frequencies are less than 10 Mhz, and the
resulting rms_edge_counter is less than the threshold triggering level in the defined time
window size, for 5 consecutive windows. But if the event does not occur for 5 time windows then
it is not characterized as fall, and an ADL code is passed to “fall_adl_detected”.

ADL event is encoded as “01”, fall event as “11”, while a no action event as “00”. When a fall is
detected, a new data is assigned X’FFFF” [FIGURE], which is then used for the transmission.

113

ena_edge_counter 2
df_ena_edge counter 1 2
df_ena_edge_counter_2 2
send trigger_2

new data_2

state] measee bmer_3

114

siate/ meamre tner _3

time counter_3

4 _RMS EDGE_COUNTER S0 Data-
4 faull adl dutectsd 14 Dats-

|:' 1) o Data-
‘o) 40 Dats-

17.2.2 7.3.2.1 UART Transmitter verification

When a fall happened, a packet of X’FFFF” is sent to the Rx of the UART of the DUT, along
with the party bit, otherwise a packet of X"0000” is sent [FIGURE]. Parity was included in the
design to detect data errors, and thus increasing the data accuracy. For the parity
implementation, even parity was used, thus the parity bit became zero after X’"FF” byte
[FIGURE].

Figure 29 parity figure

115

...

T
(6N e X

Figure 30 x"ffff" and X"0000" figure

17.2.3 7.3.2.1 UART Receiver verification

To test the receiver, we used X"’61” (start bit) and X"’62” (stop bit), which were transmitted to the
receiver. Based on the received bit, only then the three counters can be seen to start working
and stopping. When the bit was X"61” we can see the measurement process started, while at
X’62” it stopped. As even parity was implemented in the transmission line data stream, it was
also included in the receiver side to receive the transmitted data stream. The data received
must match with the received parity bit, only then the data is fully validated, and the counters
start working. Otherwise, the counters do not work [FIGURE].

4 atate] recsiver

¢ counter

116

wait! for_start bit

§ 8

(=

Zh3
1
0
1
&hs.
1
1

“ rx counter

¢ shiftregrx

v

¢ negedge rx

* mxd

¢ recetved data

¢ enameasure

“ _ parity checker
+ fall_adl_nothing

Figure 32 parity right

7.7. RTL synthesis on VHDL model (Quartus Il)

For synthesizing of the VHDL design into an RTL model Quartus Il was used, and the
hardware FPGA Cyclone Il (EP3C16F484) was selected as the modelling device.
Alongside the VHDL code, another file called Synopsis Design Constraint file (extension
.sdc) was passed to Quartus, in order to validate the pre-defined timing requirements by
performing a time driven synthesis [FIGURE]. The aim of the file is to validate our
design timing based on the minimum resource usage and the maximum allowable
delays.

117

1 create clock -period 20.@ -name clk [get ports clk]

2

3 create clock -period 200 -name freq in [get ports freg_in]

4 create clock -period 20@ -name freq_in 2 [get_ports freq_in 2]
5 create clock -period 20@ -name freqg_in 3 [get_ports freq_in 3]
6

7 create clock -period 20.@ -name clk ext

8

9 set_input delay -clock clk ext ©.2 [all inputs]

10 set_output delay -clock clk ext ©.2 [all outputs]

11 set_clock groups -asynchronous -group {clk clk ext} -group {freq_in freq_in 2 freq_in 3}
12 derive clock uncertainty

13

14

After the project was started with the selected VHDL code and the .sdc file (stored in the project
directory), the analysis and synthesis flow was performed. [FIGURE] shows the successful
VHDL synthesis in Quartus. As we can see from the summary it contains the fundamental
information related to our used resources, combinational blocks and logical registers.

Flow Status Successful - Sat Nov 28 20:52:55 2020
Quartus II 64-Bit Version 13.0.1 Build 232 06/12/2013 SP 1 S] Web Edition
Revision Name FMEAS_UART_ANZEN
Top-level Entity Name FMEAS_UART_ANZEN
Family Cyclone I
Device EP3C16F484C6
Timing Models Final
Total logic elements 825
Total combinational functions 809
Dedicated logic registers 209
Total registers 209
Total pins 7
Total virtual pins 0
Total memory bits 0
Embedded Multiplier 9-bit elements 6
Total PLLs 0

7.8. RTL schematic of the circuit

The RTL schematic of our device is shown in Figure [FIGURE] which was accessed via the RTL
viewer of the Netlist Viewer Tab in Quartus Il. The schematic has also been segmented in a
smaller part to zoom the contents ([FIGURE]) since it is too big. This is due to because of the
number of combinational functions and logic registers being required by our design. The design
shows the usage of these combinatorial and sequential networks via different interconnections.

118

Figure 33 A section of the schematic (because it is too big)

The state machines of our designed system were observed using the State Machine Viewer and
RTL viewer tool under the same tab. [Figure] to [Figure] shows the generated state machines
and their corresponding RTL block from Quartus Il. We can see there are three separate state
machines and RTL blocks for the three-frequency timer measurement. Apparently the three
state machines have identical states, however their RTL model has different I/O ports.

119

— clk

—— df_enable_edge counter_ack 2
— enable_measure

— reset

— time_counter[15.0]

measure_timing

wait_for_enable_m I revait_for_ack_1 walt_fo r_ack_2

state_measure_timer

measure_timing |—
wait for adk 1 |—
wait_for_ack 2 |—

wait_for_enable_measure —

- wa'rl_for_enable_m rwalt_for_ac k 1 measure_timing wait_for_ack 2

120

state measure timer 2

clk

df enable edge counter ack 2 2
enable measure 2

reset

time counter 2{15.0]

messure timing

wait For ack 1
wait_for ack 2
wait for enable measure

state_measure_timer 3

clk

df_enable_edge counter_ack 2 3
enable_measure_3

reset

time_counter_3[15..0]

measure_timing
wait_for_ack_1
veit_for_ack 2
wait_for_enable_measure

send_start_bit

send_stop_bits

send_panty_bit

121

state_transmitter

122

state_receiver

123

7.9. Pre-Layout Timing Analysis

The pre-layout timing analysis (or Static Timing Analysis (STA)) validates the design to meet the
minimum timing requirements. This step is performed based on the SDC file mentioned earlier,
which defines the timing constraints for the maximum allowable delays. STA compares these
allowable maximum delays with the actual ones produced by the synthesis tool. However, since
the constraint file can also be incorrect, another post-layout timing analysis was performed after
the post-place & route simulation (discussed later).

The main purpose of the provided constraint file was to check whether our design can successfully
operate on a FPGA with a global clock of 50 Mhz. We considered the results for the “Slow 1200mV
85C model” of the chosen FPGA in TimeQuest Timing Analyzer, because it contains the harshest
environment and worst-case situation, including the temperature 85C.

We can see from the Fmax summary in Figure [FIGURE] that the maximum frequency, which can
be reached by the system is 310.17 MHz. This value 10 times larger than our threshold frequency
for fall detection, thus satisfying Nyquist-Shannon sampling theorem, as well as giving us large
region to operate without errors.

Slow 1200mV 85C Modk«

Fmax Restricted Fmax Clock Name
1 226.86 MHz 226.86 MHz freq_in_3
2 261.51 MHz 250.0 MHz freq_in_2
3 277.78 MHz 250.0 MHz freq_in
4 310.17 MHz 250.0 MHz clk

The slack times of different clocks used in the circuit during the setup and hold time are given in
Figure [FIGURE] and [FIGURE]. We can see that the slack times are all positive, that means that
there is scope to increase the signal arrival time at different nodes without considerable affect on
system delays. Also, a detailed slack of setup of the clock ‘clk’ is given in figure [FIGURE]. Like
the previous observation, we can see that there are no negative slacks here. Thus, we can claim
that our design does not any further adjustments, because the paths generated are quite fast to
operate the circuit at the desired speed.

Slow 1200mV 85C Model Setup Summary Slow 1200mV 85C Model Hold Summary

Clock Slack End Point TNS Clock | Slack | End Point TNS
1 dkext 13.954 0.000 1 jdk _ [0.358 10.000
2k 16.776 0.000 : ;req—f” , E;:i EEEE
3 freqin_3 195502 0.000 rens 0. :
- ot 2 s e 4 freq_in_3 0.359 0.000

atn_ : : 5 dkext 5601 0.000
5 freqin 196.400 0.000

124

Slow 1200mV 85C Model Setup: "cik’

Data Delay

Slack
1 16.776
2 16.779
3 16.802
4 16.805
5 16.805
6 16.818
7 16.825
8 16.831
9 16.844
10 16.844
11 16.851
12 16.864
13 16.890
14 16.917
15 16.926
16 16.928
17 16.929
18 16.930
19 16.946
20 16.951
21 16.951
22 16.958
23 16.959
24 16.963
25 16.967
26 16.968

a
4

12 nTa

7.10.

From Node
time_counter_2[9]
time_counter_2[11]
time_counter_2[9]
time_counter_2[11]
time_counter_2[15]
time_counter_2{13]
time_counter_2[3]
time_counter_2[15]
m_counter{3]
time_counter_2{13]
time_counter_2[3]
time_counter_2[8]
time_counter_2[8]
time_counter{0]
r¢_counter{4]
rx_counter{1]
rx_counter[4]
rx_counter{4]
time_counter{12]
time_counter{12]
time_counter_2[14]
time_counter{1]
time_counter_2[7]
time_counter{1]
rx_counter[12]
time_counter_2[0]

L P S AL

Resource

To Node
counter_ended_2
counter_ended_2
enable_edge_counter_2
enable_edge_counter_2
counter_ended_2
counter_ended_2
counter_ended_2
enable_edge_counter_2
n_counter{12]
enable_edge_counter_2
enable_edge_counter_2
counter_ended_2
enable_edge_counter_2
time_counter[15]
rx_counter{11]
rx_counter{12]
rx_counter{5]
n_counter{1]
enable_edge_counter
counter_ended
counter_ended_2
enable_edge_counter
counter_ended_2
counter_ended
n¢_counter(4]
counter_ended_2

mmnhla adan maimbas

Launch Clock
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk

requirements

Latch Clock
clk
clk
clk
dk
clk
clk
ck
ck
dk
clk
clk
ck
clk
clk
clk
ck
dk
clk
clk
clk
ck
clk
clk
clk
clk
clk

i

characteristics of synthesized circuit

and

Relationship
20.000
20.000
20.000
20,000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20,000
20.000

an ann

Clock Skew
-0.080
-0.080
-0.063
-0.063
-0.080
-0.080
-0.081
-0.063
-0.060
-0.063
-0.064
-0.081
-0.064
-0.062
-0.062
-0.060
-0.062
-0.062
-0.057
-0.057
-0.080
-0.057
-0.081
-0.057
-0.061
-0.080

A ncn

the

3.139
3.136
3.130
3.127
3.110
3.097
3.089
3.101
3.091
3.088
3.080
3.050
3.041
3.016
3.007
3.007
3.004
3.003
2.992
2.987
2.964
2,980
2.955
2.975
2.967
2,947

- ncy

timing

After the STA, the Fitter (Place & Router) analysis was performed. Through this operation, the
cells of mapped logic gate level models are fitted to exact locations, and the routing resources
are dynamically allocated to implement the networks. This helped us to gather necessary details
about the resource requirements and timing characteristics of the synthesized circuit. [FIGURE]
shows the summary of the Fitter flow, while [FIGURE] and [FIGURE] shows the detailed one. We
can see that the design is using about 6% of the provided resources, which is much low.

125

Flow Status
Quartus II 64-Bit Version
Revision Name
Top-level Entity Name
Family
Device
Timing Models
Total logic elements
Total combinational functions
Dedicated logic registers
Total registers
Total pins
Total virtual pins
Total memory bits
Embedded Multiplier 9-bit elements
Total PLLs

Successful - Sat Nov 28 22:10:03 2020

13.0.1 Build 232 06/12/2013 SP 1 S] Web Edition

FMEAS_UART_ANZEN
FMEAS_UART_ANZEN
Cyclone I
EP3C16F484C6

Final

866 /15,408 (6%)
851 /15,408 (6%)
209 /15,408 (1%)
210

71347 (2%)

0

0/ 516,096 (0%)
6/112(5%)
0/4(0%)

Fitter Resource Usage Summary

Resource Usage
1 v Total logic elements 866 / 15,408 (6%)
1 -- Combinational with no register 657
2 -- Register only 15
3 -- Combinational with a register 194
2
3 v Logic element usage by number of LUT inputs
1 -- 4 input functions 138
2 -- 3 input functions 347
3 -- <=2 input functions 366
4 -- Register only 15
4
5 v Logic elements by mode
1 -- normal mode 422
2 -- arithmetic mode 429
6
7 v Total registers® 210/17,068 (1%)
1 -- Dedicated logic registers 209 /15,408 (1 %)
2 -- 1/O registers 1/1,660(<1%)
8
9 Total LABs: partially or completely used 66/963(7%)
10 Virtual pins 0
11 v JO pins 7/347(2%)
1 -- Clock pins 3/8(38%)
2 -- Dedicated input pins 0/9(0%)
12

126

12
13
14
15
16
17

Global signals

M9Ks

Total block memory bits

Total block memory implementation bits
Embedded Multiplier 9-bit elements

5

0/56(0%)

0/ 516,096 (0%)
0/516,096 (0%)
6/112(5%)

18 PLLs 0/4(0%)
19 Global clocks 5/20(25%)
20 JTAGs 0/1(0%)
21 CRC blocks 0/1(0%)
22 ASMI blocks 0/1(0%)

23
24
25
26
27
28
29

Impedance control blocks

Average interconnect usage (total/H/V)
Peak interconnect usage (total/H/V)
Maximum fan-out

Highest non-global fan-out

Total fan-out

Average fan-out

0/4(0%)
0% / 0% / 0%
3% /4% / 3%
209

38

3098

2.80

7.11. Post-place & route simulation model and timing
Analysis

To have a possibility to import the post-place&route simulation model it was necessary
to create it from level of Quartus II. This option is given by EDA Netlist Writer. After that the
simulation files: FMEAS_UART_6_1200mv_85c_slow.vho and
FMEAS_UART_6_1200mv_85c_vhd_slow.sdo appeared in the simulation folder. Through
changing names of the entities both designs were compared: previously prepared one and the
one generated through Quartus IlI.

To detect possible differences between designs following signals were chosen: rx (from
testbench), tx_struct (L_DUT_STRUC, from Quartus Il design), tx_behav (L_DUT_BEHAV from
previously prepared design). The simulation had to be run for 25ms (which in real time took
about one hour).

The post-place and route simulation was performed by writing the EDA netlist. This was
performed using the EDA Netlist Writer. This was done using the EDA Netlist Writer. A set of
simulation files were generated, and we chose the
FMEAS UART_ANZEN 6 1200mv_85c_slow.vho and
FMEAS_UART_ANZEN_6_1200mv_85c_vhd_slow.sdo files. As we analyzed using the 85C
slow model in the pre-layout timing analysis stage, we are selecting the same model files. The
vho file corresponds to the RTL model of our digital system, while the sdo file contained the
delay data of the technology cells and their interconnections of the selected post-place and
route simulation model. We also changed the names of the structural entity and the behavioral
entities for the timing analysis.
The following signals were chosen to analyze the possible differences in timing and delay
between the pre-layout and post-layout design:

o X

o tx_struct (from the Quartus Il RTL model)

127

e tx_behav (from the previous VHDL design)
SDF file was included during the simulation performed in ModelSim Altera. The simulation was
run for 25 ms.

The simulated waveforms from the updated testbench is given in Figure [FIGURE] to [FIGURE].
We can see that no delays were noted, even in the zoomed images. This verifies our digital
system’s timing requirement and will ensure proper sensor operations.

References

[1] A. Stapleton, "Efficacy of Methylphenidate in the Geriatric Population for Fall
Prevention," 2018.

[2] N. EI-Bendary, Q. Tan, F. C. Pivot, and A. Lam, "FALL DETECTION AND PREVENTION
FOR THE ELDERLY: A REVIEW OF TRENDS AND CHALLENGES," International
Journal on Smart Sensing & Intelligent Systems, vol. 6, no. 3, 2013.

[3] W. H. O. Who, "Falls," (in English), World Health Organization: WHO, 2018/01/16/ 2018.
[Online]. Available: https://www.who.int/news-room/fact-sheets/detail/falls.

[4] N. Adamczewska and S. R. Nyman, "A New Approach to Fear of Falls From
Connections With the Posttraumatic Stress Disorder Literature," (in eng), Gerontol
Geriatr Med, vol. 4, pp. 2333721418796238-2333721418796238, 2018, doi:
10.1177/2333721418796238.

[5] H. Gjoreski, M. Lustrek, and M. Gams, "Accelerometer placement for posture
recognition and fall detection," in 2011 Seventh International Conference on Intelligent
Environments, 2011: IEEE, pp. 47-54.

[6] P. Ntanasis, E. Pippa, A. T. Ozdemir, B. Barshan, and V. Megalooikonomou,
"Investigation of sensor placement for accurate fall detection," in International
Conference on Wireless Mobile Communication and Healthcare, 2016: Springer, pp.
225-232.

[71 A. T. Ozdemir, "An analysis on sensor locations of the human body for wearable fall
detection devices: Principles and practice," Sensors, vol. 16, no. 8, p. 1161, 2016.

[8] C.-N. Huang, C.-Y. Chiang, G.-C. Chen, S. Hsu, W.-C. Chu, and C.-T. Chan, "Fall
detection system for healthcare quality improvement in residential care facilities," J. Med.
Biol. Eng, vol. 30, no. 4, pp. 247-252, 2010.

128

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]
[25]

"Tango® Belt - Hip Protection Redefined," ed, 2020.

"Hip'Safe by Helite — Airbag protection for seniors," ed, 2020.

X. Wang, J. Ellul, and G. Azzopardi, "Elderly Fall Detection Systems: A Literature
Survey," Frontiers in Robotics and Al, vol. 7, 2020, doi: 10.3389/frobt.2020.00071.

A. Kurniawan, A. R. Hermawan, and I. K. E. Purnama, "A wearable device for fall
detection elderly people using tri dimensional accelerometer," 2016: IEEE, doi:
10.1109/isitia.2016.7828740. [Online]. Available:
https://dx.doi.org/10.1109/isitia.2016.7828740

A. Sucerquia, J. D. Lopez, and J. F. Vargas-Bonilla, "SisFall: A Fall and Movement
Dataset," (in eng), Sensors (Basel), vol. 17, no. 1, p. 198, 2017, doi:
10.3390/s17010198.

A. Sucerquia, J. D. Lépez, and J. F. Vargas-Bonilla, "Real-Life/Real-Time Elderly Fall
Detection with a Triaxial Accelerometer," (in eng), Sensors (Basel), vol. 18, no. 4, p.
1101, 2018, doi: 10.3390/s18041101.

P. Pierleoni, A. Belli, L. Palma, M. Pellegrini, L. Pernini, and S. Valenti, "A high reliability
wearable device for elderly fall detection," IEEE Sensors Journal, vol. 15, no. 8, pp.
4544-4553, 2015.

A. Purwar, D. U. Jeong, and W. Y. Chung, "Activity monitoring from real-time triaxial
accelerometer data using sensor network," in 2007 International conference on control,
automation and systems, 2007: IEEE, pp. 2402-2406.

"Google Trends," ed, 2020.

R. Igual, C. Medrano, and I. Plaza, "Challenges, issues and trends in fall detection
systems," Biomedical engineering online, vol. 12, no. 1, p. 66, 2013.

A. K. Bourke, J. V. O'Brien, and G. M. Lyons, "Evaluation of a threshold-based tri-axial
accelerometer fall detection algorithm," (in eng), Gait Posture, vol. 26, no. 2, pp. 194-9,
Jul 2007, doi: 10.1016/j.gaitpost.2006.09.012.

M. Saleh and R. L. B. Jeannés, "Elderly Fall Detection Using Wearable Sensors: A Low
Cost Highly Accurate Algorithm," IEEE Sensors Journal, vol. 19, no. 8, pp. 3156-3164,
2019, doi: 10.1109/JSEN.2019.2891128.

K. Chaccour, R. Darazi, A. H. el Hassans, and E. Andres, "Smart carpet using
differential piezoresistive pressure sensors for elderly fall detection," in 2015 IEEE 11th
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), 2015: IEEE, pp. 225-229.

M. Pickavance, "Best fall detection sensors of 2020," (in English), TechRadar,
2020/03/31/ 2020. [Online]. Available: https://www.techradar.com/best/best-fall-
detection-sensors.
S. Timoshenko and J. N. Goodier, “Strength of Materials Part 1,” J. Elast., 1955.

Oktaviani.J, ZF#ENo Title No Title, vol. 51, no. 1. 2018.

G. Brown, “An accelerometer based fall detector: development, experimentation, and analysis,”
University of California, Berkeley, no. July. pp. 1-9, 2005.

[26]E. H. Klaassen et al., "Silicon fusion bonding and deep reactive ion etching: a new

technology for microstructures," Sensors and Actuators A: Physical, vol. 52, no. 1-3, pp.
132-139, 1996.

[27] S. T. Cho, "Batch-dissolved wafer process for low-cost sensor applications,"

in Micromachining and Microfabrication Process Technology, 1995, vol. 2639:
International Society for Optics and Photonics, pp. 10-17.

[28]J. Dong, Z.-j. Long, H. Jiang, and L. Sun, "Monolithic-integrated piezoresistive MEMS

accelerometer pressure sensor with glass-silicon-glass sandwich
structure," Microsystem Technologies, vol. 23, no. 5, pp. 1563-1574, 2017.

129

[29]F. Ender. B. U. o. technology. (2020). Redeuced order Modelling in Ansys.

[30]H.-I. Jung, D.-S. Kwon, and J. Kim, "Fabrication and characterization of monolithic
piezoresistive high-g three-axis accelerometer," Micro and Nano Systems Letters, vol. 5,
no. 1, p. 7, 2017.

[31]G. Tang et al., "Fabrication and analysis of high-performance piezoelectric MEMS
generators," Journal of Micromechanics and Microengineering, vol. 22, no. 6, p. 065017,
2012.

[32]S. Tez and T. Akin, "Comparison of two alternative fabrication processes for a three-axis
capacitive MEMS accelerometer," Procedia Engineering, vol. 47, pp. 342-345, 2012.

[33]Y. Zhou, Z. Wang, Q. Zhang, W. Ruan, and L. Liu, "A Front-Side Released Single
Crystalline Silicon Piezoresistive Microcantilever Sensor," Sensors Journal, IEEE, vol. 9,
pp. 246-254, 04/01 2009, doi: 10.1109/JSEN.2008.2012197.

[34] C. Wang, J. Zeng, K. Zhao, and H. Chan, "Chip scale studies of BCB based polymer
bonding for MEMS packaging," in 2008 58th Electronic Components and Technology
Conference, 2008: |IEEE, pp. 1869-1873.

130

